Draft Draft

Wolframe documentation

Copyright © 2010 - 2014 Project Wolframe
Aug 29, 2014

Draft Draft

Table of Contents

Developing Wolframe Server APPliCAIIONSccuvuiiiiiiie it Xiii
FOTBIWOIT ...ttt e et e e e b s XXi
O [gL oo (8ot 1o o R PSPPSR 1

L1 AFCHITECIUNE ...ttt 1
1.1.0. Presentation TEroooeieieiiei e 1
I o o o (= ST 1
L1130 DAA TEN oeeeitieeeeii ettt ettt e 2

2. Installation via binary Packagesoveieuieiiiiiiii e 3

2.1 LinuX diStrDULIONSceeiitiee e e 3
2.1.1. RedHat, Fedora, CentOS, Scientific Linux and similar Linux
ISLIDULIONS ... 3

AVaIlahle PACKBGESccovviieeiiii e 3
Prer@QUISITES ...t 3
Install binary packages manuallyccccooiiiiiiiiiiiiiii e 4
INnstall from rEPOSITONYuuiiiiiiie e 4
2.1.2. Debian, Ubuntu and similar Linux distributionscccoocveviiinnnee. 4
AValahle PACKBGESccovviieeiii e 4
Prer@QUISITES ...t 5
Install binary packages manuallycccoooiviiiiiiiiiiiin e 5
INstall from rEPOSITONYc..uuiiiiiiie e 5
2.1.3. openSUSE, SLES and similar Linux distributionsc.cccoeveeenni. 6
Available PACKBGESccevvieeiiii e 6
Prer@QUISITES ... ittt 7
Install binary packages manuallyc.ccooiviiiiiniiiiiin e, 7
INnstall from rEPOSITONYuuiiieiiiee e 7
214, ATCHLINUX ...t 8
AVaIlahle PACKBGEScceevii et 8
Prer@QUISITES ... 8
Install binary packages manuallycccoooiiiiiiiniiiiiin e, 8
Install from rEPOSITONYccevuniiiiiiie e 8
Install from the AUR ... 9
215, SIACKWAE ...t e 9
Available PACKBGEScoevvieeiii e 9
Prer@QUISITESieeeeeeie e 10
Install binary packages manuallyccocooiiiiiiiniiiiiin, 10

2.2. Other UNIX SYSEEMSeiiiiiieiiet et e et e et e e 10
220 FIEeBSD ..o 10
222 NEBSDoiiiiiiii e 11
2.2.3. S018MS L0 ..ot 11

3. CONFIQUIBLION ...ttt ettt e e e e e e eaan s 13

3.1. Service or daemon CONfIQUIaLIONuuiviiiiiieiiii e 13
L1 WINUOWS ...ttt ettt 13
312, UNIX ettt 13

3.2, Server CONFIQUIALTIONceeveeeiii et 14
2.1 LIS et 14
322, LISIENSSL ... 15
323 IP TESIIICHIONS ...ceevtieeiiiie et 16

3.3. LOQgger CONFIQUIBLION ... eeeeiieeeeii e 16
3.3.1. Log message types and [0g 1eVElScoovviiiiiiiii e 16
3.3.2. LOg backendsooeiiiiiieiii e 17

Backend CONSOIEcoouuiiiiiiii e 17
Backend 10gfileveiieie e 17
Backend SYSIOQceeeeiieiiii e 17
Backend eventlogc.uuveiiiiiiei e 18
B IMOUIES ...t 18

Draft Wolframe documentation Draft

3.5. GlObal SEIINGS ...vvviiiieei e 19
3.6. Database CoNfigUIationcccuuiiiiiiiiiie e e e e e e e 19
3.6.1. POSIOrESQL. ...evevvviiiiieeeeeeeeeitie e e s e e e e e e ettt e e e e e e e e e r e 19
REQUITEIMENES ...ovtiiii e e e e e e e eaaeas 19
Configuration SELINGSovvuiiiieii e 20

Example configurationcoeeviiiiiiieiie e e 21

I ST o) (= C 21
REQUITEIMENES ...ovtiiii e e e e e e e e eaaes 21
Configuration SELINGS .. .ovvuiiiieii e 21

Example configurationccoeeuiiiiiiieiie e e 22

BB.3. OrBCIE ..t 22
REQUITEIMENES ...ovtiiii e e e e e e e e eaaes 22
Configuration SELINGS .. .ovvuiiiieii e 22

Example configurationcoeeuiiiiiiieiie e e 23

R A L P 24
g I g1 o [F o ' o PP 24
4.2. Embedding AAAA into an existing infrastructureccoeeeevieeiiieiinnennnn. 24
4.3. AAAA CONFIQUIBLION ...uuiiiteiii e e e e e e e e eees 24
A4, AULNENEICAHION ..ouvuiiiiiii e e eeaens 24
T = (U1 = 1 1=) T 24
4.4.2, Configuration SEHINGSccvveiiiieeii e e 24
4.4.3. Example configurationcoeeveieiiiiieiii e 25
4.4.4. Authentication MECHScviiiiiiiiiiiii e 25
4.4.5. DevelOpMENt SEALUScvvueiiieiiieeeieeeie e e e e et e e e e e e e s e e eaaeens 25

AU 11 To = o) [P PP 25
4.5.1. Authorization based on connection iNfoccovveviiiiiieeiiineeecin, 25
4.5.2. Authorization based on identitycccoeeiiiieiiiiiiiiic e 26
4.5.3. Command execution authoriZationccuuveeiiuiieeeeiiieeeiiineeeens 26
DevelOpMENE SLAEUSuevveneeiiieii e e e e e e e e e e e e e e eaens 26

4.6. Auditing and aCCOUNLINGvvuuiiii e e e e e e e e e aanas 26
4.6.1. DevElOPMENE SEALUSevvueieieiiiieeiie e e e e e e e e e e e e e e e e eaneens 26

SR DT = o] 001>] o P 27
5.1. Processor ConfigUurationoeeuuieiuuieiiieeiiee e e e e e eeaieeeaneeeteeeaneeeaneens 27
5.2. Application Server REQUESESccvuuiiii i eeie e e e e e e e e s 27
5.3. Command handlerccoouuiiiiiiiiie e 28
5.3.1. The standard command handlercccooveiiiiiinieiiiiineeeeeeeinn 28

g1 (8ot [o S SPTTSPPPIN 28

Example configurationccocouiiiiiiieiie e e 28

Example command desCriptioncooecviiiiiiieiiii e 28

Command description [anguageccuvveiiieiiiieiie e e 29

KEYWOIASiiiiiiie e e e e e e 29

Simple doCUMENE MAPcevviiiicie e, 29

Command with action PrefiXoovvveeeiiniiiinci e 29

Explicit function name declarationcccoeevviiiiiiieiiineennnn, 29

Returned document declarationccooovveviiviiiiiiieiieiinieeeiienn. 30

Returned document meta datacovveveviiiiiiiiiiiece e, 30

Skipping the document validationcccoeeiiiiiiiiii e, 30

Return a standalone documentcooeuiieviiiinieeiiiine e 31

Explicit filter definitions for acommandcccoocvvieeinnn, 31

Authorization CheCKSovvviviiiiiii e, 31

Adding parameters from the execution contextcccceunnees 32

USING Bracketscooviiiicii e 32

OVEIVIBIW .ttt e et e et es 32

LY B e o 0] PP 33
5.4.1. TransaCtionS in TDL ..oovuuiiiiiiiiiieceiiie e 33

F 1100 (8o [o o KSR 33

SOME INEEINAIS .. 34
(0001170 [0 17= 1 (o] o S 34

Draft Wolframe documentation Draft

Language desCriptioncc.viiiiiiiiiieei e 34
SUBIOULINES ...ttt e e et e e eeae e e 34
Transaction function declarationscooevvvviieiiiiiiienciiineees 35
Main processing iNStrUCtIONSccuueiiiieiiiiiecii e e e, 36
Preprocessing iNStrUCHIONSvvvvnieiiiciie e 37
Selector pathcoovviiii 38
Referencing Database RESUISccevvviiiiiiiiiiciii e, 40
Naming database resultsc.ccuvveviiieiiiie e 40
Referencing Subroutine Parameterscooevvvieeiiieeiiievineeennnn, 41
Constraints on database resultSc.cvvveviiiiiieiiiiineeee e, 41
Rewriting error messages for the clientccococoeveviiviinenn, 42
substructures in the result ..o 42
Explicit sefinition of elementsintheresultcooeeee, 43
Database Specific COEovvvniiiiiiiie e 43
Subrouting temMpPlatesccvviiiiieiie e, 44
INCIUAES ... 44
AUAITING Lovnieiec e 45

5.4.2. FUNCHONS IN INET ..o 46

F g1 100 18 o[o R SPTTSPPPN 46

(0001110 [0]= 1 (o] o S 46

FUNCEION TNEEITACE ... 46
FUNCEION CONEEXL ...oivvviieeiii e e 46
FUNCLION SIGNBEUIEcvvicii e e 46
EXAMPIE ..o 47

Prepare .NET asSsemMbIli€Sc.uoeiiiiiiiiciee e 47
Make assemblies COM ViSibleoiveviviiiiiiiiie e, 47
Tag exported objects witha Guidccooveviiiiiiiiii e, 47
Add marshalling tagsto valuesccccciiiiiiiiiiiieci e, 48
Example with COM introspection tagscccoeeevvieviineeiinennnns. 48
Create atype librarycocoiiiiiiiiiiii e 49
Register the type libraryc.cooviiiiiii 49
Register the assembly inthe GACccocoiiiiii i, 49
Register the typesinthe assemblycooovviiiiiiiiiiin e, 49

Calling Wolframe funCtionsccccouiiiiiiiiiiiiicii e 49

Configure .NET assembli€Scovvviiiiiiiiiii e 50
Assembly Declarationc.ccuoveiiiiiiiiiieii e 51
Get the PublicKeyToKenccocvviviiiiiiiii e 51

Validation ISSUESccvuiiiiiiiiiecie e 51

5.4.3. FUNCLIONS iN PYthONcovnii e 51

Current developmeNt SEAtUScvvevinieiii e e e e e e 51

5.4.4, FUNCHONS TN LU «.evvvteiiiiis e e et e e 51

INEFOTUCTION ...t e e e e et eeeeae e eeees 51

(0001170 [0 17= 1 (o] o S 52

Declaring fuNCioNSccviiiiiicii e 52

Wolframe provider librarycooooviiiiiiiii e, 52

UsSiNg atOMIC data tyPES .. cvvueiiiieeii e e e e e e e 52
Data type 'datetime’ccoevniiiiiiiie e 53
Data Type 'bignumber’c.cooiiiiii e, 54

Filter interface Ieratorso.uviie i 54

[terator [IDraryccooueiiiiiic e 55

Global ODJECES . .cvvniiicc e 55

USING TOMMS oo e e e e e e aes 55

FOIM fUNCHIONS ... 56

TS o) B U= W] o 1= ot £ P 56

5.4.5. FUNCLIONS IN NALIVE CHt ooiiiiiicii e 58

F 1100 (8o [o o KSR 58

= (= 0 (V1 =S 58

Declaring fuNCioNScovniiiiicii e e 58

Draft Wolframe documentation Draft

Example Function Declarationcccoceiiviiiieiiiiiecineeieeeeenn, 59

INput/output data SLIUCIUIEScevveiiiieiii e e e e e 59

Header file .oovvnieiii i 59

SOUICE Il woveiiiiiii e 60

Writing the Module ... 60

Module deClarationoooveuiieiiiiiiiee e 60

Building the module ..o, 61

USINg the MOdUIeiiii e 61

Validation ISSUESccvuiieiiiiie e 61

DD FOIMIS e 61
5.5.1. Form data definition [anguagesccoeevieeiiiieiiii e 62

F 1100 (8o [o o KSR 62

Forms in Simpleform DDLc.uiiviiiiiiiieee e e 62

COMIMANGS ...ttt e 62

SHUCLUIES ...ttt e e e e e ens 62

Elements of SLUCIUMESoovviviiieiiic e 63

Embedded structure definitionscovevveviiieiiiiiiieriiiin e 63

Default atomic value assignmentsccocevveeieeiiieeiineeeineennn, 63

Types of aomMiC VAlUESoevvniiiiiieeii e 64

Element attributescoovviiiiiiii 64

Embedding elements and inheritancec..ccooeeiiieiineeins 64

Declaring document meta datacoeeevveiiiieiiiieiiiieeiieeeis 65

Example form definitionccoocoiieiiiiiiii 65

5.5.2. DatatypeS iN DDLSivviiiiiii e 65

g1 100 [0 ot [o PSPPI 65

EXAMPIE oo 66

Language desCriptioncc.veiiiieiiieei e cee e e e 66

TYPE ASSIGNMENES ...evneiii e e e e e e e e e e e e e eees 66

Standard modules for Normalizersoooeevvvieveiiinieiiiiinneeeennn, 66

(000170 (8= 1 (o o S 66

I G 1 = PP 67
B5.6.1. XML FiIEr vt 67

g1 (8ot [o S SPPTSPPPN 67

Character Set eNCOdINGSu.vvvueiiiieii e e e 67

(0001110 [0]r= 1 (o o S 68

5.6.2. JSON FIlLEr ..uiiieiiiiee e 68

g1 (8ot [o S SPTTSPPPIN 68

Character Set eNCOMINGScvvueiiiieii e e e e e 68

(@011 1o 1= 1 (o] o S 68

YR A S I I 1 = S PP 69
INEFOTUCTION ...t e e e e et e e e eaa e eeees 69

Character Set eNCOGINGSu.vvvueiiiieii e e 69

(0001170 [0 17= 1 (o] o S 69

5.7. Testing and defect handlingcccouiiiiiiiiiii e, 69
B5.7.1. USINg WOIITEr .ovvniiii e 69

Test CONfIgUIELioNovvuiiii i e 70

Testing afilter oovveii e 70

== 1] 0o - Y o 1 P 70

Testing @ FUNCHIONuuiiiiici e e 71

([0S PPN 72
g0 1= PO 74
A. GNU General Public LICENSE VErSION 3uiiiiiiiieiiii et e e 75
WOIFAME CHIENES .. i e et e e et e e e et e e e e ran s IXXxv
IO [oo [0 1o o TP 1
2. CHentS WIth PHP ... 2
2.1 REQUITEMENES ...oeiiiii e e e e e e e e e e e et e e et e e e e e e anaeeeen 2

2.2. PHP client MOQUIEScoviviiieiiii et 2
2.2.1. Example script implementing arequestcoovvviieiiiieiii e 2

Draft Wolframe documentation Draft

2.2.2. Example script for apassword changecccocveveviiiiiiin e, 2
2.2.3. The SESSION INLEITACE ...vvuiiiiii e e 2

P2 B [015 7] = o) o PP 3
3. CHeNtS WIth INET (CH) ..noieii et 4
3L CHClIeNt MOTUIEScouunieiiii e e s 4
311 EXAMPIE SCIIPL .uueiiiiii e e 4
3.1.2. The SESSION INLEITACE . .vvuiieiii et e 4
3.1.3. The SESSION CONSLIUCLOTiiiiieneeeeeiiieeeeii s e e eeei s e e et e e eeri e e eeaenneeees 5

Ot 1= 01 £ 1 T N 7
N (o 11 (= o L1 (= PPN 7
A2, ATEITACES e 7
A.2.0. UL TOMMS oottt e e 7
4.2.2. Ul form translationscccouuiiiiiiiiieiiiii e 7
4.2.3. RESOUICES ... ceuieieieeee ettt ettt e e e e e e e e e e ees 7

4.3. Programming the interfacecocoiiiiiiiii e 7
4.3.1. Mapping XML dataocovuieiiiieiiiieeie e e e 8
Starting POSILION ...ccuvniiiieii e 8

First @Xampleooovniii e 8

ANOther eXampleoooiii 9

4.3.2. SWItching Ul fOrmMSoiviiiiiii e 10
4.3.3. States and BEhaVIOUruiiiiiiiiii i 10
Reserved private dynamic propertiesccoeevviiieiiineeiineciiieeeieeennn. 10

Reserved public dynamic propertiesccooevveieiiieeiiii e 10

Stearing of widget behaviourcccoeeviiiiiii i, 10

User interface flowoveeiiiiiieii e 11

Additional interface elementscccceeiiiiiiiii 11

Defining Server reqUESt/anNSWEYcc.oevvviieiiiieeiiieiiine e e e 11

Variables and symbolic [inkScccoeeiiiiiiii i, 12

Widget states depending on dataccccovvveviiieiiiiiiiiiieiieeeannn, 13

Additional signalsand SlotScc.ooviiiiiiiii e, 13

Drag and dropceeeneiiiiiei e 13

4.3.4. Widget properties as dynamic property ValueSccoeeevevevinneinnnnnnn. 14

4.4, Programming SErver reqUESES/aNSIWESc.uueiiunieeiieeeiieeeieeseeesineeeanneeaneens 14
4.4.1. Adressing Widget datacoevneeiiiiiiiiieiie e 14
Biggest common ancestor Pathcccoeevviiiiiiiciiie e 14
Addressing atomiC ElemMentSocoviiiiiiiii 14

Specia path €lements ..o 15
Addressing the form widgetcooceiiiiiiieiiin e, 15

WIiGEL [INKS ..oueeeecc e 15

4.4.2. Data SIIUCIUMNEScueeeeeiiee e e e e e e e 15
EXAMPIE oo 15

A4 3. AT AYS ittt e e 15

(1= Sor 11 o)1) o [P 15

EXAMPIE oo 16

4.4.4. Indirection and FECUISIONeeiiiiiieeeiiiiee et e et e e e 16

(D= Sor 11 o)1) o [P 16

Example (arbitrary tre€)ooviiiiiiiiiciie e 16

Example (BiNary treg)coovviiiiiicii e 16

4.5, Eliminating interface defeCtScooviiiiiiii e 17
4.5.1. Switch the developer Mmode oncoeiviiiiiiii e 17
4.5.2. Inspect errors and warnings and debug messages reported 17
g0 1= PSP 19
Wolframe Installation from SOUMCEuiiiiiiiiei e e e e e aees XX
L. INSLAllEtion frOM SOUICE ..vuuieiieii ettt e e e e e e e e aa e e eannns 1
1.1, SOUrCE REIEASES .. .ceeviieeeii et 1
1.2. Building on UNiX SYSEIMSivvniiiicii e e e e e e e e 1
1.2 1. Prer@QUISITES .uuuiiie i e e et e e e e e e e e e e e et e e e e e e e aanees 1
1.2.2. Basic build INSLIUCLIONSieiiiiieeecie e 2

Draft

Wolframe documentation Draft

1.2.3. GCC COMPILEr eniitiii e
1.2.4. clang COMPILEr ...ooenii e e
1.2.5. INtel COMPIIEN .ouiiiiiie e
1.2.6. Using ccache and diSICCccuuiiiiiiiiiiiiii e e
1.2.7. Platform-specific build INStructionsccooeiiiiiiiiiiii e
FIEEBSD ..uuiiiiiii ettt
NEIBSD ...ttt aes
Openindiana 151a8ccvuuieiiiieiiiie e e e e e e
SOIANIS L0 ettt
1.2.8. BOOSE . .ceieeiie et
Build your own version of BOOSEcccveivieiiiiiiiiiecii e eeaie

RedHat, Fedora, CentOS, Scientific Linux and similar Linux

Lo (1=] 10 11 o -

RedHat/Centos/Scientific Linux 5 and similar Linux

Ubuntu 10.04.1 LTS, Ubuntu 12.04cvvviiiiieeeereeiiiin e
Ubuntu 13.10 and 14.04coovveiiiiee e
openSUSE, SLES and similar Linux distributionscccocevvn.
OPENSUSE 12.3, 13.1 ..uuiiiiiieeiieeeeiiiie e e e e e e e
SLES 11 SP1, SP2 and SP3uuieeiiiieiiiiie et e e
ATCRLINUX ettt e e et et e e e e e e e aea s

FrEEBSD 10 .iiuiiiiiiiiiieieiiieie e e
FreeBSD 8 and Ooiiiiiiiiiiii e
NEBSD ...
Openindiana 151a8ccevuiiiiiieiie e e e
SOIANS L0 et
1.2.9. Secure Socket Layer (SSL) ..vuovvviieiiiieiiieee e

RedHat, Fedora, CentOS, Scientific Linux and similar Linux

Lo (1= 1] 1011 o -
Debian, Ubuntu and similar Linux distributionsc.covvevevvieniinnnnns
openSUSE, SLES and similar Linux distributionscccocevuen.

YN o 0| IR 10

NEBSD ...

Openindiana 151a8ccvuuieiiiieiii e e e
SOLAMNS 10 vt
1.2.10. SQL.ite database SUPPOITcvvvneieieeeeii e e e e
RedHat/Centos/Scientific Linux 5 and similar Linux distributions..........
RedHat/Centos/Scientific Linux 6 and 7, Fedora and similar Linux
AIStTIDULIONS ..eeii e
Debian, Ubuntu and similar Linux distributionscccccoeeiveiennnnn.
openSUSE, SLES and similar Linux distributionsccccecevunnee.
ATCHLINUX 1uitiiii ettt e e aaas

NEBSD ...

Openindiana 151a8ccevuiiiiiiieiii e e
SOIANS L0 i

Draft Wolframe documentation Draft

1.2.11. PostgreSQL database SUPPOITevvnieiiiieeiie e e e 11
RedHat, Fedora, CentOS, Scientific Linux and similar Linux
AIStTIDULIONS ..eeii e 12
Debian, Ubuntu and similar Linux distributionscccccoeeiveeinnnn. 12
openSUSE, SLES and similar Linux distributionscccceceunneee. 12
ATCHLINUX 1uiiiii e et e e e aaes 12
SlACKWAIE ..t 12
FrEEBSD 10 ...iieniiiiiiii et 13
FreeBSD 8 anNd 9 ...u.iiveiiii e 13
N[1= 15 13
Openindiana 151a8ccvuuiiiiiieiii e ee e e 14
SOLANS 10 vt 14
1.2.12. Oracle database SUPPOIccvueeiiieiiiiicei e e e 14
RedHat, Fedora, CentOS, Scientific Linux and similar Linux
AIStTIDULIONS ...eeii e 14
Debian, Ubuntu and similar Linux distributionscccccoeeiveeennnenn. 15
openSUSE, SLES and similar Linux distributionscccceeevnnnee. 15
ATCHLINUX ouiiiii e ettt e e aans 15
SlIACKWEIE ..ttt 15
FIEEBSD ..oniiiiiii e 16
N[1= 15 16
Openindiana 151a8ccvvuiiiiiieiii e 16
SOLANS 10 vt 16
1.2.13. XML filtering support with libxml2 and libxsltcccoeveenninnnn. 16
RedHat/Centos/Scientific Linux 5 and similar Linux distributions.......... 17
RedHat/Centos/Scientific Linux 6 and 7, Fedora and similar Linux
AIStTIDULIONS ... 17
Debian, Ubuntu and similar Linux distributionscccccoeevveennnenn. 17
openSUSE, SLES and similar Linux distributionsccccevuneee. 17
ATCHLINUX ouitiiii ettt e e aaes 17
SlACKWEIE o.iviie e 17
FIEEBSD ..oniiiiiii e 17
N[0S 17
Openindiana 151a8ccvvuieiiiiieiii e e e e 17
SOLANS 10 vt 17
1.2.14. XML filtering support with Textwolfccooeviieiiiiiiiie e, 17
1.2.15. JSON filtering support with CJSONcccoviiiiiiiiiieeie e, 18
1.2.16. Scripting support With Luaccoveiiiiiiiiiiii e, 18
1.2.17. Scripting support with Pythonc.ccooviiiiiiinee e, 18
RedHat/Centos/Scientific Linux 5, 6 and 7 and similar Linux
AIStTIDULIONS ...eeii e 19
Fedora and similar Linux distributionsc.ccooevveiiiiiiiiiiicecieenn, 19
Debian, Ubuntu and similar Linux distributionscccccoeevveinnnnn. 19
openSUSE, SLES and similar Linux distributionsccccecevuneee. 19
ATCHLINUX 1uitiiii et e e aans 19
SlIACKWEIE ..t 19
FrEEBSD 10 ...iivniiiiiiii et 19
FreeBSD 8 anNd 9 ...uvivvniiiieei e 19
N[1= 15 19
Openindiana 151a8ccevuiiiiiiieiii e e 19
SOLANS 10 orniiiiii e 20
1.2.18. Printing support with libhpdfccoooii 20
RedHat/Centos/Scientific Linux, Fedoraand similar Linux
AIStTIDULIONS ..eeii e 20
Debian, Ubuntu and similar Linux distributionscccccoeeiveiennnnn. 20
openSUSE, SLES and similar Linux distributionsccccecevunnee. 21
ATCHLINUX 1uitiiii ettt e e aaes 21
SlACKWEIE ..t 21

Draft

Wolframe documentation Draft

FreEBSD 10 ..ouiiiiiii i 21
FreeBSD 8 and Oivniiiiiiii i 21
NEBSD .ottt 21
Openindiana 151a8ccvuuiiiiiieiii e e 21
SOLAMNS 10 ovniiiiiii e 21
1.2.19. Image processing With Freelmagecocoveeiiiiiii e, 21
RedHat/Centos/Scientific Linux and similar Linux distributions............. 22
Fedora and similar Linux distributionsc.ccooevveiiiiiiieiieieeieenn, 22
Debian, Ubuntu and similar Linux distributionsccoceveiveinnnnn. 22
openSUSE, SLES and similar Linux distributionscccecevnneee. 22
ATCHLINUX 1uitiiii e e e et e e aaes 22
SlACKWAIE ..t 23
FreEBSD 10 ..ouiiiiiiiiiii e 23
FreeBSD 8 and Oivniiiiiiici e 23
NEBSD .ttt 23
Openindiana 151a8ccvuuiiiiiieii e e e 23
SOLANS 10 vt 23
1.2.20. ZIlib @and lBPNG c.vvneiiiii e 23
1.2.21. SUPPOrt FOr TCU ... 24
RedHat/Centos/Scientific Linux, Fedoraand similar Linux
AIStTIDULIONS ...eeii e 24
Fedora and similar Linux distributionscccoeeeiveiiiiiiiiiieieeieenn, 24
Debian, Ubuntu and similar Linux distributionscocoveeiveinnnenn. 24
(D o =T I TP 24
DEDIAN 7 et 24
Ubuntu 10.04.1 LTS, Ubuntu 12.04ccvvevniiiiiiiieeieeiieeeenn, 25
Ubuntu 13.10 and 14.04ovniinieiiceeeee e 25
openSUSE, SLES and similar Linux distributionscccccuueeee. 25
OPENSUSE 12.3, 13.1 .ouiiiiiiiie e e e e e e e e eae e 25
SLES 11 SP1, SP2and SP3 ..ot 25
ATCHLINUX 1vitiii ettt e e aaes 25
SlIACKWEIE ..t 25
FrEeEBSD 10 ..ouiiiiiiiiiie e 25
FreeBSD 8 and Ovvniiiiiiii i 25
NEBSD .ottt 25
OpeniNdiana 151a8ccevuiiiiiieiii e e e 25
SOLAMNS 10 vt 26
1.2.22. Internationalization support with gettextcccoveviiiiiiiiiiieeiees 27
Linux diStriDULIONScvuiiiiiiicceeeeee e 27
FrEEBSD ..ottt 27
NEBSD .ottt 27
Openindiana 151a8cceuuiiiiiieiii et eee e e e 27
SOLANS 10 vt 27
1.2.23. Authentication support With PAMocoiiiiiiiiii e 27
RedHat/Centos/Scientific Linux, Fedoraand similar Linux
AIStTIDULIONS ..eeci e 28
Debian, Ubuntu and similar Linux distributionscccccoeeiveinnnenn. 28
openSUSE, SLES and similar Linux distributionsccccocevuneee. 28
ATCHLINUX 1uitiiiic et e e aaas 28
SlACKWEIE ..t 28
FrEEBSD ..ottt 28
NEBSD .ottt 28
Openindiana 151a8ccevuiiiiiiieiii e e 28
SOLANS 10 orniiiiii e 28
1.2.24. Authentication support With SASLcocoiiiiiiiii e, 28
RedHat/Centos/Scientific Linux, Fedoraand similar Linux
AIStTIDULIONS ..eeii e 29
Debian, Ubuntu and similar Linux distributionscccccoeeiveinnnnn. 29

Draft

Wolframe documentation Draft

openSUSE, SLES and similar Linux distributionsccccecevunnee, 29
F N o |1 1 N 29
S o = TP 29
FrEEBSD ..iuiiiiieeiie ettt a e aanaa 29
NEIBSD ..ttt 29
Openindiana 151a8ccvuuiiiiiieiii e e a e 29
0] = 1300 O 30
1.2.25. Testing WOolframeccouiiiiiiiie e e 30
1.2.26. Testing With EXPECLvviiiiiiiicee e 30
RedHat/Centos/Scientific Linux, Fedora and similar Linux
AIStriBULIONSoieic e 30
Debian, Ubuntu and similar Linux distributionsccccoceveeennnn. 30
openSUSE, SLES and similar Linux distributionscccoccuuneee. 30
N o o1 1 N 31
S o =P 31
FrEEBSD ..iiiiii i e eiiieee sttt a e 31
=2 P 31
Openindiana 151a8ccvuuiiiiiiieiii e e e e 31
0] = 1300 O 31
1.2.27. Building the documentationcccoiiiiiiiiiiiii e, 31
RedHat/Centos/Scientific Linux and similar Linux distributions............. 31
Fedora and similar Linux distributionsccccccoiveiiiiiinniiiieeeiee, 31
Debian, Ubuntu and similar Linux distributionsccccoceveeennnn. 32
openSUSE, SLES and similar Linux distributionsccccecevuneie. 32
N v |1 1 N 32
S o = TP 32
FrEEBSD ..iiiiiiieiiiie ittt a e 32
NEBSD ..t 32
1.2.28. INSEAl@HON .uuiiieiiiiec e 32
1.2.29. Manual dependency generationcoeeuueeiiiieiiiieriie e, 33
1.2.30. Creating source tarballsccoceviiiiiiiiii e, 33
1.2.31. Building the wolfclientccoooviiiiiiiiii e, 33
RedHat/Centos/Scientific Linux 5 and similar Linux distributions.......... 34
RedHat/Centos/Scientific Linux 6 and 7 or similar Linux
AIStiDULIONSiiicc 34
Fedora 19 and 20 and similar distributionscccocccoiiiiineine, 34
Debian 6 @nd 7c.uiiiiiei e 34
Ubuntu 10.04.1 @and 12.04ovvvuiiiieiiieeeiie e 34
Ubuntu 13.10 and 14.04ccooeeeiiiee e 35
openSUSE 12.3, SLES and similar Linux distributions 35
OPENSUSE 131 ..o 35
F N v |1 1 SN 35
S o = TP 35
FreeBSD 8 and 9ccoiiiiiiiii e e 35
FreeBSD 10 .iiiiiiiiiiiee e it 35
NEIBSD ...ttt 35
Openindiana 151a8cceuuiiiiiieiiieeiii e e 36
0] = 1300 O 36
1.3. Building on Windows systems (the NMAKE Way)ccooovvieiiiiiiiiiiecieeennn, 36
1.3 1. Prer@QUISITES .uuuiien it e e e 37
1.3.2. Basic build inStruCtioNScovvvieiiiieiii e 38
1.3.3. Using ccache and diStCCccvviiiiniiiiii e 39
I 0 B T o1 39
Use prebuild version of BOOSEoovvviiiiiiiiiiiicii e 39
Build your own version of BOOSEc.ceevviiiiiiiiiiii e 39
1.3.5. Secure Socket Layer (SSL) ...vuvvvvieiiiieiii e 40
Use prebuild version of OpenSSLcvevvveiiiiiiiiieeeee e 40
Build your own version of OpenSSLcccoveviiiiiiiiiiiiiece e, 40

10

Draft Wolframe documentation Draft

1.3.6. SQLite database SUPPOITcvvvniiiiieeiii e e e e 41

1.3.7. PostgreSQL database SUPPOIcevueiiiiiiieeiiiieeiiee e e e e e e 41

Use prebuild version of POStGreSQLocvvveviiiiiiiiieciieeciieeei e 42

Build your own version of PostgreSOQLcccccvveiiieeiiiieiiineeieeeenn. 42

1.3.8. Oracle database SUPPOItcovviiiiieiii e e e 43

1.3.9. XML filtering support with libxml2 and libxsltcccccoiieiiieennn.n. 44

Use prebuild versions of libxml2 and libxsltcccoovviiiiiiieeinnnnnnn. 44

Build your own version of LIDXIML2c.coooviiiiiiiiiiieciin e 44

Build your own version of LIDXSLTcooovviiiiiiiiiiiiceecec e, 46

1.3.10. XML filtering support with Textwolfccooeviiiiiiniiiiiice e, 47
1.3.11. JSON filtering support with CJSONcccvviiiiiiiiiieeiie e, 47
1.3.12. Scripting support With Luac.ccvviiiiiiiiii e 47
1.3.13. Scripting support with Pythonccocooiiiiiiiiee e, 47

Use prebuild version of Pythoncccoooeiiiiiiin, 47

Build you own version of Pythonc.ccoiiiiiiinin e, 48

1.3.14. Printing support with libhpdf ..., 48
1.3.15. Image processing with Freelmagecocoveeiiiiiiiiiciie e, 48
1.3.16. Zlib @and lBPNG c.vvneiiiei e 49
1.3.27. SUPPOIt FOr TCU ..o 49

Use prebuild version of ICUccoviiiiiiiiii e 49

Build you own version of ICUcccoeoiiiiiiiei e 49

1.3.18. Testing WOlframecoouniiiiiiciiec e 50
1.3.19. Testing With EXPECL ...ccvviiiiciii e 50
1.3.20. Building the documentationc..ccoiviiiieiiiieiiie e, 51
1.3.21. Building the Wolfclientccocouiiiiiiiii e, 51
Wolframe Server EXtension MOUUIEScovviiiiiiiiiii e e Iv
[0= 1o (o P lix
IO [oo [0 1o T T P 1
A = TS Tol B - = B Y/ o L= 2
A B T o | 1Y/ o Y 2
3. MOAUIE DECIAIELIONeevvieeeiiie ettt e et e et e e e et e e e e aanees 6
3.1. Module Declaration FIramec.uuiiiieuiiiieiiii e 6
3.1.1. Empty Module Declaration EXampleccooevviiiiiiieiiin e, 6
3.1.2. Module Declaration MaCIOScuuuieeiiiiieeeiiinieeeeiineeeeiineeeeeiinneeees 6
3.2.BUilding @aMOUIEcoeiiii e 6
3.3. Exported Objects of aModUIEueiiiiiiiiii e 6
3.3.1. Define Normalization Functions (Normalizers)occveeevviveviineiinnnnnn, 6
NOrmalizer INterfaceovviviiiiiii e 7

BUIlding BIOCKSccouiiiiii e 7

Declaring a resource singleton objectcoocoviiiiiiiiiiein e, 7

Declaring a normalizer not using any resoUrCecc.uveeevnneennnn. 8

Declaring anormalizer USiNg @reSOUrCEcccvuveevneeinierrineeanneens 8

EXAMPIES ..o 8

Example Without reSOUrCEScoovvviiiiiiiiiii e, 8

Example With reéSourcesccoeoviiiiiieiin e, 9

3.3.2. Define Custom Data TYPES c.vunevvneiiiieieiieeeieee e ee e e e e e e e eaaes 10
Custom Data Type Interfaceoovviiiiiii e 10
CustomDataType SITUCIUMEvniiiiiiiee e 10
CustomDatalnitializer Interfaceccoovevviiiiiiiiiiiiieeeen, 11

Class CustomMDataValUEoveeiiiiiieeiiiiieeeeciiie e 12

BUilding BIOCKSccuiiiiiiiii e 12

Declaring a custom data typec.vuvvevneeiiiiiiie e 12

3.3.3. DEfINE OIS «oeviieiiii e 13
Filter element tyPES ...vuiii e 13

Filter element VAlUESviiiiiiiiiii e 13

FIlter INTErface ...ooovv e 13

INput Flter SLIUCIUIEvveeeecii e, 13

Output FIlter SITUCLUIEccovnevi e 14

11

Draft

Wolframe documentation Draft

Flter SIIUCLUIEovviie e 16

BUilding BIOCKSccvniiiiiii e 16

Declaring afilterooooiiiiiiii 16

L1105 PN 17
100 L= PP 18

12

Developing Wolframe
Server Applications

Wolframe Application Development Manual

Draft Draft

Developing Wolframe Server Applications: Wolframe Application
Development Manual

Publication date Aug 29, 2014 version 0.0.3

Copyright © 2010 - 2014 Project Wolframe

Commercial Usage. Licensees holding valid Project Wolframe Commercial licenses may use this file in accordance with the Project
Wolframe Commercial License Agreement provided with the Software or, alternatively, in accordance with the terms contained in a written
agreement between the licensee and Project Wolframe.

GNU General Public License Usage. Alternatively, you can redistribute this file and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

Wolframe is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

Y ou should have received a copy of the GNU General Public License along with Wolframe. If not, see http://www.gnu.org/licenses/

If you have questions regarding the use of thisfile, please contact Project Wolframe.

http://www.gnu.org/licenses/

Draft Draft

Table of Contents

0= 1o (o PP SPP PP XXi
O | oo (0ot o o H TSSO RPPPTT 1
L1 ATCHITECIUNE ...ttt et e e e e 1
110, Presentation TErcooeue it 1
I o o [o 1= TP PP 1
R DT - 1= TP P T UPPPTTRPPPIN 2

2. Installation via binary Packagesooceeuuiiiiiiie e 3
2.1 LinUX diStITDULIONSceeiei et e et 3
2.1.1. RedHat, Fedora, CentOS, Scientific Linux and similar Linux distributions......... 3
AVEIADIE PACKBGESceeiviieeieii e 3
Prer@QUISITES ... et 3

Install binary packages manuallyccooiieiiiiiiiiiiii e 4

INStall fromM FEPOSITONYceveiiiiiii e 4

2.1.2. Debian, Ubuntu and similar Linux distributionscccoevviiiiiiiiniiieineeneen. 4
AVEIIADIE PACKBGESceeiviieeee e 4
PreEr@QUISITES ... ettt 5

Install binary packages manuallyccoooiiiiiiiiiiiiiiii e 5

INStall fromM FEPOSITONY ...oceveiiiiii e 5

2.1.3. openSUSE, SLES and similar Linux distributionscccooeviiiiiniiinnnnen, 6
AVEIIADIE PACKBGESceeiviiieiie e 6
PrEr@QUISITES ... ettt 7

Install binary packages manuallyccooooiiiiiiiiiiiiiii e, 7

INStall fromM FEPOSITONYceviieiiiiii ettt 7

214, ATCHLINUX ..ot 8
AVEIIADIE PACKBGESceeeeiieeeei e 8
PrEr@QUISITES ... ettt 8

Install binary packages manuallycooooiiiiiiiiiiiiii e 8

INStall fromM FEPOSITONY ...ceeviiiiiiii et 8

Install from the AUR ..o 9

215, SIACKWAIE ...ttt 9
AVaIlaDI e PACKBGESccviviiieeiii e 9
Prer@QUISITES ... et 10

Install binary packages manuallycccoooiiiiiiiiiiiiiii e 10

2.2. Other UNIX SYSEEMS ...ttt ettt e e e e e e e 10
220 FIEEBSD ...t 10
222, NEBSD ...t 11
2.2.3. S0lAMS L0 ...t 11

A o110 U = (o o H TP PP TR UPPPTTR 13
3.1. Service or daemon CONFIGUIBLIONuuiiertiieieiir et 13
L1 WINUOWS ...ttt ettt e e e e e s 13

3 0 U o QST T O SPPPPTRSPPPPT 13

3.2, SErVEr CONFIQUIALIONceeveieeeiit ettt e e 14
B2 LIS it 14
32,2, LISIENSSL ...t 15
323 IP TESIIICHIONS ..eeevieeeeii ettt ettt 16

3.3. LOQgQEr CONFIQUIBLIONcieeiieieei ettt e et e e 16
3.3.1. Log message types and 10g 1eVEIScooviiiiiiii 16
3.3.2. LOg hackendsoeeiiiiieiii e 17
Backend CONSOIEcouuiiiiiii e 17

Backend 10gfileiiie e 17

BaCKeNd SYSIO0ueeeeiiieeeii e 17

Backend eVentloguiiiiiiiei e 18

A IMOUIES ...ttt 18
3.5, GlODEL SEIINGS ...eeveeeeeit e 19
3.6. Database CONFIQUIBLIONuuiiiiii ettt 19

XV

Draft Developing Wolframe Draft

Server Applications
3T R = 0TS (=S | 19
REQUITEIMENES ...ovniiii e e e e e e e e e ea e eaaas 19
Configuration SELLINGS .. .cvvueiii i e e e e 20
Example configurationcoeuuiiiiiiicie e 21
B.B.2. SOITED it e et aa 21
REQUITEIMENES ...ovniii e e e e e e et e et e e ea e e eeans 21
Configuration SELLINGSvvuiiii i e e e e e eaa e 21
Example configurationcoeuuiiiiiiiiiin e 22
BB.3. OFBCIE ..t 22
RS (U1 1= 1 22
Configuration SELINGS .. .cvvuiiii i e e e e 22
Example configurationccooeuiiiiiiiiie e e 23
A A S SSRPPPPUTN 24
g I g1 o [o o PP 24
4.2. Embedding AAAA into an existing infrastructurecoooeiiveiiie i, 24
4.3, AAAA CONFIQUIALION ...uiiiiii e e e e e e e e e e e et e e et e eaaeees 24
N 11 91< 01 [1 o) o PR 24
N T L= (U1 (= 0= | T 24
4.4.2, Configuration SEHINGSccvueiii e e e e e e e e e e e aanas 24
4.4.3. Example configurationc.uoieiiieiiiner e e e e e e e e e e e 25
4.4.4. AUthentication MECNSiiiiiiiiiii e 25
4.4.5. DEVEIOPMENE SLALUS .. cevuieiiieitieeeieeeii e e e e e e e e e et e e et e et e e st e eeaneeeanes 25
U 119 To g2 1 o) o [PP 25
4.5.1. Authorization based on coNNECLiON INfOcccuvviveiiiiiiiiii e 25
4.5.2. Authorization based on identitycccoeeiiiiiiiiieii e 26
4.5.3. Command execution authOriZationccevveiiuiiiiieiin e 26
DeVEIOPMENE SEAEUS ...evvieieiiieiieeei e ee e e e e e e e e e e e e st e e st e e e e eannaas 26
4.6. Auditing and aCCOUNLINGoevuiiiii i e e e e e e e e e e e e e e e et eeaaeees 26
4.6.1. DEVEIOPMENE SLALUS .. evvueeinieirieeiiiee et e et e e eie e s e e et e e et e e e e eateeeaneesanes 26
S DT = o]0 0= 1 o P 27
5.1. Processor COonfigUIralioncceeuuieiuneeeiieiitie e e e s e ee e e e e et e e e e eat e eaneeeanes 27
5.2. Application SErVEr REQUESESuuiieieeiiieiieee e e e e e e e e e e et e e e eeaes 27
5.3. Command NaNAIErcoouuniiiiiiie e 28
5.3.1. The standard command handlercoveiiiiiiiiiii e 28
g1 oo [0 o [o PSPPI 28
Example configurationccoeeuiiiiiiiie e 28
Example command desCriptioncooeveiiiiiiieiiie e 28
Command desCription [anQUBGEcccvveiiiiiiiieie e 29
= VAT o (0 29
Simple doCUMENE MADcovveiiie e e 29
Command with aCtion PrefiXoveviiiiiiiiciec e 29
Explicit function name declarationccoeeviiiiiiiieiii e, 29
Returned document declarationcccuuevieviiiiniiiiiiineecinee e 30
Returned document meta datavveviiiiiiiiiiiiee e, 30
Skipping the document validationcccoeeeiiiiiiieii e, 30
Return a standalone documentcoouiviiiiiiiieeiii e 31
Explicit filter definitions for acommandccooeeiiiiiiiiineennn, 31
AULhONZation ChECKSuiiiiiicci e 31
Adding parameters from the execution contextc.ccceeeevveeennnnns 32
USING Bracketsccvviiii e 32
OVEIVIBIW .ttt e et e e e et e e e e ean s 32
oY B T o o) PSSP 33
5.4.1. TransaCtionS iN TDL .ovuuuiiiiiiiii e e e 33
T g1 (8o [o PSPPSR 33
SOME INEEINAIS et e e e ea e e e eat e eaes 34
(00011 To 7= 1 (o o IS 34
Language dESCIiPLIONociveieii e e e e e e e e 34
S 00010 1] =~ PP 34

XVi

Draft Developing Wolframe Draft
Server Applications
Transaction function declarationsccuuoviviiiineiiiiiin e, 35
Main processing iNStIUCHIONSuvviiiieiiiieii e e e e e eaneeeee 36
Preprocessing iNStIUCLIONSvviieeiiieciie e e e e e e e 37
Selector Pathcoovniii 38
Referencing Database RESUILScovvviiiiiiiiiiicc e 40
Naming database reSUltScoevuiiiiiiieiie e 40
Referencing Subrouting Parametersceuvevviiieiiineeiieciieeeieeennnn 41
Constraints on database reSUItSvveveviiiiiiiiii e 41
Rewriting error messages for theclientccooiiiii e, 42
SUDSErUCLUreS iN the reSUITvviiii e 42
Explicit sefinition of dlementsintheresultc..cooeeiiiiiiiniinennn, 43
Database SPeCIfiCc COUEivvnieiiicii e 43
Subrouting teMPlateScvuiiiiieiie e 44
INCIUAES ... e 44
N 8o 111 o 45
5.4.2. FUNCHONS IN INET ..ot 46
g1 oo 18 o [o RSP TSPPP 46
(00011 1o 7= 1 (o o IS 46
FUNCEION TNEEITACE ... 46
FUNCEION CONEEXE ...ttt 46
FUNCLION SIGNBEUIEuiiiicii e e e e e e e 46
EXAMPIE oo 47
Prepare .NET assembliescccviiiiiiiii e, 47
Make assemblies COM ViSIDIEc.uuiiiiiiiiiiecii e 47
Tag exported objects with @ Guidcoocovviiiiiiiiiec e, 47
Add marshalling tagSto ValUEScccceviiiiiiiiiiiiii e, 48
Example with COM introspection tagsccooevvviveeieeiiiieeineeieeeennn, 48
Create atype librarycooieiiiiiiii i 49
Register the type libraryccccoiviiiiiiiiii e, 49
Register the assembly inthe GACcooviiiiiiiiii e, 49
Register the typesinthe assemblycccooooiiiiiiiiiii e, 49
Calling Wolframe fUNCLIONScoiiiiiiiiiieii e 49
Configure .NET asSemMbIIEScovvniiiii i 50
Assembly DeClarationcouuveiiiiiiiiiiciie e 51
Get the PUbliCK@YTOKENcovniiiiiciie e 51
Validation ISSUESc.uuiiiiiiiii e 51
5.4.3. FUNCLIONS iN PYINON ..ot 51
Current developmEeNt SEALUSueevnieiiii e e e e e e eeaas 51
oY g o (0 S T T U PP 51
g1 0o [0 ot [o PSPPSR 51
(@001 To 7= 1 (o] o ISP 52
Declaring fUNCLIONSoiviiiiiii e e 52
Wolframe provider [ibrarycooooiiiiiiiii e 52
USiNg atOMIC dat@ LY PES .. cvvuiii i e 52
Data type 'datetime’covniiiiiiiiie e 53
Data Type 'bignumber’ ..., 54
Filter INterface IEratorsuuiiiiiii e 54
Rz = (0 G 1T o =Y 55
GIObal ODJECES . .ovviciii e 55
USING TOMMS Lot e e e e e e e e aaas 55
FOIM FUNCHIONS ... e e s 56
(TS o) B U= W] o 1= ot £ 56
5.4.5. FUNCLIONS IN NAEIVE CHF ooovuiiiiiiiiieciiii et e e e eaees 58
T g1 (8o [o PSPPSR 58
[= (= 0 (811 (== 58
Declaring fUNCLIONSoiviiiiiie e e 58
Example Function Declarationccocouiveiiiieiiiniiiiiee e, 59
INPUL/OULPUL dafa SLIUCIUIESivviciii e e e e e e e 59

XVii

Draft Developing Wolframe Draft

Server Applications
HEAEr Il ooovniiii e 59
SOUICE FIlB 1eviieieii e 60
Wrting the MOdUIEcovvii e 60
Module dECIarationcoeveuuieeiii e 60
Building the moduleooiiii e 61
USINg the MOAUIEoniii e 61
Validation ISSUESccovuiiiiii e 61
DD PG e e 61
5.5.1. Form data definition [angUagEScc.veiviiiiiiiei e e 62
T g1 oo [0 o [o SRS 62
Forms in SIMPIEfOrmM DDLoeviniiiiiieie e e 62
COMIMEANGS ...ttt e e e et e e et 62
SHUCLUIES ... ettt e e et e e e e enas 62
Elements of SEIUCIUIESoovvviiecci e 63
Embedded structure definitionsoooevveiniiiiiiinieci e 63
Default atomic value assignmeNtsScoevvveiiiieiiineciieeee e e, 63
Types of aomiC VAIUESccuuiiiiieeiiiicci e, 64
Element attribUtesviiiiiii 64
Embedding elements and inheritancecoooeiveiiieeii e, 64
Declaring document meta datacocevueeiiieiiiiieiiie e, 65
Example form definitionccoooiiiiiiii 65
5.5.2. DatatypeS iN DDLS ...uuiviiiiiii e 65
F g1 oo (8ot [o H PRSPPI 65
EXAMPIE oo 66
Language dESCriPLIONocieuiii i e e e e e e e e 66
TYPE ASSIGNMENES ...eveeiiie e e e e e e e e e e e e e e e eanas 66
Standard modules for NOrMalizersoooeuvevveiiiiinieii e, 66
(00011 To 8= 1 (o o IS 66
YT 11 = T PP 67
B5.6.1L. XML FIOr et e 67
g1 0o [0 ot [o PSPPSR 67
Character Set eNCOAINGS ..u.ivvueiii e e e e e e e e e e e e aes 67
(00 11 To 1= 1 o] o IS 68
G2 S @ |V {1 = PSPPI 68
g1 oo [0 o [o PSPPI 68
Character SEt eNCOAINGScvvueiiieiii e e e e e e e e e aes 68
(00011 To 1= 1 (o] o IS 68
LR A S I I 1 = PP 69
g1 o [0 ot [o PSSP 69
Character Set eNCOAINGS ...u.evvneiiiieiii e e e e e e e e e aes 69
(@001 To 7= 1 (o] o ISP 69
5.7. Testing and defect handlingcooouiiiiiiiii e 69
B.7.1. USING WOIFIEr .ovniii e e 69
LIz e 0 a1 Lo (U= (o] I 70
TeStiNg A fIlLEr o oveiii e 70
== 11 0o = o 1 70
TeSting @ FUNCHIONuuiiiiic e e e e ae 71
L1075 72
g0 1= PP 74
A. GNU Genera Public LiCENSE VEISION 3cviviiieiiiiiieeiiie e et e e e et e e 75

XViii

Draft Draft

List of Figures

I O Y= VT =V 1
LT O V< Y/ =Y A 27

XiX

Draft Draft

List of Tables

3.1. Windows service configuration SEtNGSeveerunierirtiieieeii et r e e e e e e 13
3.2. Unix daemon configuration SEIIINGSccoeuuiiiiiiiieiiiiie et 13
3.3, GlODEl SEIVEr SEIINGS .. .cieeeieeeie et 14
LA, LISION SEHINGS ... eeeett ettt 14
3.5, LISIENSSL SEIINGS ...t eeeetii ettt ettt ettt et e e 15
3.6. RESIIICHIONS SELLINGSvteeeetie ettt ettt ettt e e e e enanns 16
3.7, LOQ MESSAGE LYPIES .. eetneeti et ettt ettt et et e e e et e e 16
3.8. LoadModules configuration SEHINGSceeueuiiieiieeiii e 18
3.9. GlODEL SEINGS ... ceeeeie et 19
3.10. PostgreSQL database configuration SEttiNGSveveeeiieiiiiie e 20
3.11. SSL cONfiQUIaioN SEEEINGScevvuneeertie ettt ettt e et e e e e e re s 20
312, SSL MOUES ..ttt ettt ettt et 20
3.13. Sglite3 database configuration SELtNGSveieereieiiiiiie e 21
3.14. Oracle database configuration SEIINGSooveveniiiiii e 22
4.1. Authentication configuration SEHINGScceuuuiiiiiie et 25
5.1 OPLIONS ...ttt ettt e s 32
5.2, Marshalling TaOSuueeieiiiieeiiit ettt et e e et e e 48
5.3. Attributes of assembly declarationsoveiiiiiiiiiiii e 51
B IMEENOO ...t e et ee 52
5.5. List Of ATOMIC DaA TYPES .. eeviiieeiiiie ettt ettt et e e e e 53
5.6. Methods Of "datelimeiiiiii et 53
5.7. Methods Of "datelimeiiiiii et e 54
5.8. Filter interface iterator lemMENtSoiiiiiiie e e 54
5.9, IMEINOA ...t e e et e e e e 55
5.10. Data forms declared DY DDLc..uuiiiiiiiiiiiiiii e 56
5.11. Data forms returned DY fUNCLIONScoouuiiiiiiiii e 57
5.12. DOCUIMENT ..ttt ettt ettt et et et e e et e a e n e e e e et n e e et e e et e e eneneeaaneee 57
5.13. LOGUES TUNCHIONS .. .ceeetteeeeiti ettt ettt e ettt e e et e e et e e e e et e e e eebe e eeenes 58
5.14. GlObEl FUNCHIONS ...ttt et et e et eeenees 58
5.15. Element attributes in SIMPIEfOrmviiiiiii e 64

XX

Draft Draft

Foreword

The Wolframe project was started in 2010. The goal was to create a platform for fully customizable
business applications that can be hosted in modern system environments.

This manual introduces the architecture of Wolframe and explains how to build client/server
applications with it. After reading this you should be able to create an application on your own.

XXi

Draft Draft

Chapter 1. Introduction

First we describe the overall architecture and the data flow in a Wolframe application.

1.1. Architecture

Wolframeis a 3-tier application server.

Figure1.1. Overview

Presentation tier
>GET SALES

The top-most level of the application TOTAL
is the user interface. The main function
of the interface is to translate tasks
and results to something the user can
understand.

4 TOTAL SALES

Logic tier

This layer coordinates the
application, processes commands,

makes logical decisions and GET LIST OF ALL ADD ALL SALES
evaluations, and performs SALES MADE TOGETHER
calculations. It also moves and LAST VAR A
processes data between the two
surrounding layers.
SALE 1
QUERY SALE 2
Data tier S
Here information is stored and retrieved
from a database or file system. The
information is then passed back to the
logic tier for processing, and then
eventually back to the user.
4—
—
Storage
Database

1.1.1. Presentation tier

The presentation tier of Wolframe is implemented as a thin client. It maps the presentation of the
application from the request answers it gets from the server. For some clients the data describing
this mapping can also be loaded from the server when connecting to it. The whole processing ot the
application is made by the server.

1.1.2. Logic tier

Thelogictier of Wolframe definesthe processing of application server requestsand the rulesfor access
control with the configurable mechanisms for authorization.

Draft

Introduction Draft

Access control

A client that logs in to the system passes an authentication procedure. The resulting authentication
definesthe privileges to execute functions or accessing resources (authorization). The chapter AAAA
(Authentication,Authorization,Auditing and Accounting) will introduce the several aspects covered
by Wolframe besides data processing.

Data processing

1.1.3.

A client that passed authenti cation can send application server requeststo the server. A request consists
of a command name plus a structured content also called document. The server returns a single
document to the presentation tier as answer. Many different programming/scripting languages are
supported to define the input/output mapping between the layers. Wolframe introduces three concepts
as data processing building blocks for handling the server requests:

» Filters: Filters are transforming serialized input data (XML,JSON,CSV,etc.) to a unified
serialization of hierarchically structured dataand to serialize any form of processed datafor output.
Filters are implemented as |oadable modules (e.g. XML filter based on libxml2, JSON filter based
on ¢cJSON) or as scripts based on afilter module (XSLT filter script for rewriting input or output)

* Forms: Forms are data structures defined in a data definition language (DDL). Forms are used
to validate and normalize input (XML validation, token normalization, structure definition). The
recommended definition of a command in the logic tier has aform to validate its input and aform
to validate its output before returning it to the caller.

» Functions: Functions delegate processing to the data tier (transactions) or they are simple data
transformations or they serve as interface to integrate with other environments (e.g. .NET).
Functions have a unique name and are called with a structure as argument and a structure as resullt.
Functions can call other functions for delegation, e.g. a transaction definition can call a .NET
function for preprocessing its input or a .NET function can call a Python function to do parts of
the processing.

The chapter data processing will describe these building blocks.

Data tier

The data tier of Wolframe defines the interface to the databases of the application. A transaction
description is passed as a complete data structure to the database that returns the result of the
transaction. Thelogic tier builds the result data structure out of this result and completes other actions
defined as part of the transaction (like audit) before invoking the completion of the transaction in the
datatier with acommit or rollback. All databases of the datatier areintegrated with the sameinterface
into the server. Nevertheless there is no unified database language involved and transactions can use
proprietary language constructs of the underlying database. Wolframe supports many databases like
for example PostgreSQL , Sglite and Oracle and others can be added by just implementing the database
interface as aloadable module.

Draft

Draft

Chapter 2. Installation via binary
packages

This section describes how to install the Wolframe application via packages on various operating
systems.

2.1. Linux distributions

Linux distributions are currently built on the Open Build Server (http://openbuildservice.org) and on
abunch of virtual machines.

The resulting packages and the repository metadata is hosted on Sourceforge (http://sourceforge.net).

The packages are always build with the default system compiler, which is currently GNU gcc.

Packages for proprietary software (like the Oracle database module) have to be built manually, they
can not be distributed as binary packages due to license problems.

2.1.1. RedHat, Fedora, CentOS, Scientific Linux and
similar Linux distributions

Available packages

wolframe-0.0.3 .x86_64.rpm: contains the Wolframe core server with minimal 3rd party software
reguirements

wolframe-sglite3-0.0.3 .x86_64.rpm: the database module for Sqlite3 databases
wolframe-postgresql-0.0.3 .x86_64.rpm: the database module for PostgreSQL databases
wolframe-libxml2-0.0.3 .x86_64.rpm: filtering module for XML and XSLT (using libxml2/libxslt)
wolframe-textwolf-0.0.3 .x86_64.rpm: filtering module for XML (using textwolf)
wolframe-cjson-0.0.3 .x86_64.rpm: filtering module for JSON (using cJSON)
wolframe-pam-0.0.3 .x86_64.rpm: authentication module for PAM

wolframe-sasl-0.0.3 .x86_64.rpm: authentication module for SASL
wolframe-python-0.0.3 .x86_64.rpm: language bindings for Python

wolframe-lua-0.0.3 .x86_64.rpm: language bindings for Lua

wolframe-libhpdf-0.0.3 .x86_64.rpm: printing module using libhpdf
wolframe-freeimage-0.0.3 .x86_64.rpm: image manipuation module using Freelmage
wolframe-libclient-0.0.3 .x86_64.rpm: C/C++ client library

wolframe-client-0.0.3 .x86_64.rpm: command line tool

wolfclient-0.0.4 .x86_64.rpm:; Wolframe graphical frontend

Prerequisites

http://openbuildservice.org
http://sourceforge.net

Draft Installation via binary packages Draft

Install binary packages manually

Installing the packages viarepositories is usually the prefered way.

Install from repository

First install the repository file for the corresponding distribution (as example we choose Centos 6):

cd /etc/yumrepos.d
wget http://sourceforge.net/projects/wolframe/files/repositories/ CentCS-6/wolf

You can list all available Wolframe packages with:
yum search wol frame

You install the main Wolframe package with:
yuminstall wolfrane

Y ou have to accept the signing key:

Retrieving key fromhttp://sourceforge.net/projects/wol franme/files/repositorie
| mporting GPG key 0x9D404026:

Userid: "home:wol frame_user OBS Project <homne:wol frane_user @uil d. opensuse. or g
From : http://sourceforge.net/projects/wolfranme/files/repositories/CentOS-6/r
Is this ok [y/N: vy

Y ou can start the service with:
service wol franed start
respectively

systenctt!| start wol franed

on newer Fedora systems.

2.1.2. Debian, Ubuntu and similar Linux distributions

Available packages

» wolframe_0.0.3 _amd64.deb: contains the Wolframe core server with minimal 3rd party software
reguirements

» wolframe_sqlite3-0.0.3 _amd64.deb: the database module for Sqlite3 databases
» wolframe_postgresgl-0.0.3 _amd64.deb: the database module for PostgreSQL databases

» wolframe-libxml2_0.0.3 _amd64.deb: filtering module for XML and XSLT (using libxmlI2/libxslt)

Draft

Installation via binary packages Draft

wolframe_textwolf 0.0.3 _amd64.deb: filtering module for XML (using textwolf)
wolframe-cjson_0.0.3 _amd64.deb: filtering module for JSON (using cJSON)
wolframe-pam_0.0.3 _amd64.deb: authentication module for PAM
wolframe-sasl_0.0.3 _amd64.deb: authentication module for SASL
wolframe-python_0.0.3 _amd64.deb: language bindings for Python
wolframe-lua_0.0.3 _amd64.deb: language bindings for Lua

wolframe-libhpdf_0.0.3 _amd64.deb: printing module using libhpdf
wolframe-freeimage 0.0.3 _amd64.deb: image manipuation module using Freel mage
wolframe-libclient_0.0.3 _amd64.deb: C/C++ client library

wolframe-client_0.0.3 _amd64.deb: command line tool

wolfclient_0.0.4 _amd64.deb: Wolframe graphical frontend

Prerequisites

Install binary packages manually

Installing the packages viarepositoriesis usualy the prefered way.

Install from repository

Note: Some older versions of Ubuntu (like Ubuntu 12.04 LTS, 10.04 LTS or Debian 6) have problems
to download the metadata files from Sourceforge. If you get messages like:

W Failed to fetch http://sourceforge.net/projects/wolfrane/files/repositories,
Err http://sourceforge. net Packages

then you have to download the binaries manually.

Add anew repository file/ et ¢/ apt/ sources. | i st. d/ wol frame. |i st which contains:

deb http://sourceforge.net/projects/wolfrane/files/repositories/Uduntu-14.04 L

(as example we choose Ubuntu 14.04).

Download the signing key:

wget http://wol frane. net/ Rel ease. key

Verify that the key then add it with:

apt -key add - < Rel ease. key

Update the repository with:

Draft Installation via binary packages Draft

apt - get update

You can list al available Wolframe packages with:
apt - cache search wol frane

You install the main Wolframe package with:
apt-get install wolfrane

To start the Wolframe service you have to edit thefile/ et ¢/ def aul t / wol f r ane and enable the
wolframe daemon there:

RUN=yes
Y ou can start the service now with:

service wol framed start

2.1.3. openSUSE, SLES and similar Linux distributions

Available packages

» wolframe-0.0.3 .x86_64.rpm: contains the Wolframe core server with minimal 3rd party software
regquirements

» wolframe-sglite3-0.0.3 .x86_64.rpm: the database module for Sglite3 databases

» wolframe-postgresql-0.0.3 .x86_64.rpm: the database module for PostgreSQL databases
» wolframe-libxml2-0.0.3 .x86_64.rpm: filtering module for XML and XSLT (using libxml2/libxslt)
» wolframe-textwolf-0.0.3 .x86_64.rpm: filtering module for XML (using textwolf)

» wolframe-cjson-0.0.3 .x86_64.rpm: filtering module for JSON (using cJSON)

» wolframe-pam-0.0.3 .x86_64.rpm: authentication module for PAM

» wolframe-sasl-0.0.3 .x86_64.rpm: authentication module for SASL

» wolframe-python-0.0.3 .x86_64.rpm: language bindings for Python

» wolframe-lua-0.0.3 .x86_64.rpm: language bindings for Lua

 wolframe-libhpdf-0.0.3 .x86_64.rpm: printing module using libhpdf

» wolframe-freeimage-0.0.3 .x86_64.rpm: image manipuation module using Freelmage

» wolframe-libclient-0.0.3 .x86_64.rpm: C/C++ client library

» wolframe-client-0.0.3 .x86_64.rpm: command line tool

Draft Installation via binary packages Draft

 wolfclient-0.0.4 .x86_64.rpm: Wolframe graphical frontend

Prerequisites

Install binary packages manually

Currently installing the packages directly is the prefered way.

Install from repository

Note: Thisis currently not working perfectly and some steps have to be done manualy.
First we add the Wolframe repository for the corresponding distribution (as example we choose
OpenSUSE 13.1):
zypper addrepo http://sourceforge. net/projects/wolframe/files/repositories/opel

Y ou may get the following error:

/var/ adm nmount/ AP_Oxm yYP3/ proj ects/wol frane/fil es/repositories/openSUSE-13. 1/
Is it a .repo file? See http://en.opensuse. org/ St andar ds/ Repol nfo for details.

Try to download the repo file by hand and install it by hand:

wget http://sourceforge.net/projects/wolframe/files/repositories/openSUSE-13. 1,
zypper addrepo wol frame.repo

Now refresh your repositories with:
zypper refresh
If you get the following message
File '"repond.xml' fromrepository 'Wlfrane Project (openSUSE-13.1)' is unsign

the signing key could not be downloaded from SourceForge. Accept it in this case anyway.

If you get the following message

File './repodata/ea7ch8d9alcaa2c3d8977919bel24accdf 55c6b8952ddee72f 1b48f 4dechO

Abort, retry, ignore? [a/r/i/? shows all options] (a): u™H
Invalid answer ''. [a/r/i/? shows all options] (a): ?

- Skip retrieval of the file and abort current operation.

Try to retrieve the file again.

- Skip retrieval of the file and try to continue with the operation w thout |
- Change current base URI and try retrieving the file again.

c -
1

Draft Installation via binary packages Draft

[alr/il? shows all options] (a): u

the Sourceforge redirect didn't work and you have to force the baseURL to be a SourceForge mirror
like:

New URI: http://freefr.dl.sourceforge. net/project/wolframe/repositories/openSU
You can list al available Wolframe packages with:

zypper se wol frane
zypper se wol fclient

You install the main Wolframe package with:
zypper install wolframe
Y ou can start the service with:
service wol franed start
respectively
systencttl start wol franed

on newer openSUSE systems.

2.1.4. ArchLinux

Available packages
Wolframeis currently only available as two monolithic packages:

» wolframe-0.0.3 .x86_64.rpm: contains the Wolframe core server with all modules for 3rdParty
software included,

» wolfclient-0.0.4 .x86_64.rpm: Wolframe graphical frontend

Prerequisites

Install binary packages manually

You can use the packages from http://sourceforge.net/projects/wolframeffiles/wolframe-binaries/
directly.

Install from repository

First add the following sectionto/ et ¢/ pacman. conf ;

http://sourceforge.net/projects/wolframe/files/wolframe-binaries/

Draft Installation via binary packages Draft

[wol frane]
Si gLevel = Optional DatabaseRequired
Server = http://sourceforge.net/projects/wolframe/files/repositories/ArchLi nux

Fetch and verify the sigining key, import and locally sign the key:

wget http://wol frane. net/ Rel ease. key
pacman- key --add Rel ease. key
pacman- key --1sign 9D404026

Alternatively you can aso disable the verification of the signature of the database by removing
'DatabaseRequired’ from the 'SigLevel' option.
Update the repository data with:
pacman - Syy
You can list all available Wolframe packages with:
pacman -Sl wol frane
You install the main Wolframe package with:
pacman -S wol frane

Y ou can start the service with:

systenctt!| start wol franed

Install from the AUR

You can aso customize your build by downloading the build files from the AUR at https./
aur.archlinux.org/packages/?20=0& K=wolframe and customize them to your needs.

For instance:

yaourt -G wol frane
cd wol frame
makepkg

2.1.5. Slackware

Available packages

Wolframe is currently only available as two monolithic packages:

https://aur.archlinux.org/packages/?O=0&K=wolframe
https://aur.archlinux.org/packages/?O=0&K=wolframe

Draft Installation via binary packages Draft

» wolframe-0.0.3 .x86_64.rpm: contains the Wolframe core server with all modules for 3rdParty
software included,

» wolfclient-0.0.4 .x86_64.rpm: Wolframe graphical frontend

Prerequisites

Install binary packages manually

Download the package file (we picked 64-bit Slackware 14 for example):

wget http://sourceforge. net/projects/wol frame/fil es/wol frane-binaries/0.0.3
/ Sl ackwar e- 14/ x86_64/ wol frane-0.0. 3
-x86_64.t9z

You install the Wolframe package with:

i nstall pkg wol frame-0.0.3
-x86_64.tQgz

Y ou can start the service with:

/etc/rc.d/rc.wol framed start

2.2. Other Unix systems
2.2.1. FreeBSD

Download the package file (we choose 64-bit FreeBSD 9 for example):

wget http://sourceforge. net/projects/wol franme/fil es/wol frane-binaries/0.0.3
/ FreeBSD- 9/ x86_64/ wol f rane-0. 0. 3
-x86_64.t9z

You install the Wolframe package with:

pkg_add wol frame-0.0. 3
-x86_64.t9z

The FreeBSD packages contain the whole server and the whole client respectively.

Y ou can start the service with:
/usr/local/etc/rc.d/ wol franmed onestart

To start the Wolframe service at system boot time you have to edit the file/ et ¢/ rc. conf and
enable the wolframe daemon there with:

10

Draft Installation via binary packages Draft

wol f raned_enabl e=" YES"
Y ou can start the service now with:

service wol franed start

2.2.2. NetBSD

Download the package file (we choose 64-bit NetBSD 6 for example):

wget http://sourceforge. net/projects/wol frame/fil es/wol frane-binaries/0.0.3
/ Net BSD- 6/ x86_64/ wol frame-0. 0. 3
-Xx86_64.t9z

You install the Wolframe package with:

pkg_add wol frane-0.0. 3
-x86_64.t9z

The NetBSD packages contain the whole server and the whole client respectively.

Y ou can start the service with:
[usr/ pkg/ shar e/ exanpl es/rc. d/ wol framed onestart

To start the Wolframe service at system boot time you have to edit the file/ et ¢/ rc. conf and
enable the wolframe daemon there with:

wol f r amed=YES
Copy the example startup script to the final place:

cp /usr/ pkg/ share/ exanpl es/rc.d/ wol franed /etc/rc.d/
Y ou can start the service now with:

/etc/rc.d/ wol franmed

2.2.3. Solaris 10

Download the package file for SPARC Solaris 10 (the only one we can build at the moment):

wget http://sourceforge.net/projects/wol frane/fil es/wolfrane-binaries/0.0.3

11

Draft

Installation via binary packages Draft

/ Sol ari s-10/ sparc/wol franme-0.0. 3
-sparc-5.10. pkg. Z

You install the Wolframe package with:

unconpress wol frame-0.0. 3
-sparc-5.10. pkg. Z
pkgadd -d wol frame-0.0. 2-sparc-5. 10. pkg al |
The Solaris packages contain the whole server and the whole client respectively.
The package installsto the / opt / cswdirectory tree.
Install the CSW toolchain (http://www.opencsw.org) and the minimally required packages:

pkgadd -d http://get.opencsw. or g/ now
pkgutil --install CSWibgcc CSWi bssl 1

Depending on the third party software you plan to use you also have to install those packages, for
instance to run a Sglite3 database you have to install 'CSWsqlite3'.

Y ou can start the service now with:

/etc/opt/cswinit.d/ wolfraned start

12

http://www.opencsw.org

Draft

Draft

Chapter 3. Configuration

This chapter describes the configuration of the wolframe server besides the data processing described
in the section data processing and the AAAA backends described in the section AAAA.

3.1. Service or daemon configuration

3.1.1.

3.1.2.

The service configuration is depending on the platform you run the Wolframe server. We show the
configuration for Windows and Unix in different sections:

Windows
The service configuration for Windows is defined in the section Ser vi ce. The following table

describes the settings in the service configuration for Windows. The service configuration for
Windows isonly read at installation time. Changing them later in the configuration file has no effect.

Table 3.1. Windows service configur ation settings

Name Arguments Description

ServiceName string Parameter for service registration. Defines the
name of the service

DisplayName string Parameter for service registration. Defines the
display name of the service

Description string Parameter for service registration. Defines the
description of the service

Example configuration:

Service {
Servi ceName wol frane
Di spl ayNarre "Wl frane Daenon”
Description "Wl frane Daenon”

Unix

The daemon configuration for Unix systems is defined in the section Daenon. The following table
describes the settings in a daemon configuration:

Table 3.2. Unix daemon configuration settings

Name Arguments Description

User identifier Definesthe name of the user the Wolframe server
should run as.

Group identifier Defines the name of the group of the user the
Wolframe server should run as.

PidFile filepath Defines the path to the file used as pid file

Example configuration:

13

Draft

Configuration Draft

Daemon {
User wol frame
G oup wol f rame
PidFile /var/run/wol franed. pid

3.2. Server configuration

3.2.1.

The server configuration is defined in the Ser ver section. The server specifies the set of sockets a
client can connect to. It defines rules for how and from where a client can connect and the properties
of the connection.

It also defines some global settings listed in the following table:

Table 3.3. Global server settings

Name Description

MaxConnections The maximum number of total simultaneous connections (clients). If not
specified the default is used. The default is the operating system limit.

Threads Number of threads for serving client connections.

Here is an example configuration of the server global settings:

Server

{
MaxConnections 12
Threads 7

The server has two types of sockets to configure in the sections Li st en and Li st enSSL.
Li st enSSL isdescribing a secure connection with atransport layer encryption based on SSL/TLS.
Li st en on the other hand is describing a plain TCP/IP connection. In the following two sections
they are introduced:

Listen

In the subsections named Li st en of the server configuration we define sockets providing plain
connections based on TCP/IP. The following table describes the attributes you can set for plain TCP/
| P connections:

Table 3.4. Listen settings

Name Description

Address Listening address (IPv4 or IPv6) of the server. '127.0.0.1' and "::1' stand for
the loopback address (1Pv4 an | Pv6 respectively). Thelistener wildcards ™'
or '0.0.0.0' (IPv4) or "::' (IPv6) are also accepted.

Port Connection port. Ports 7649-7671 and 7934-7966 are unassigned according
to IANA (last updated 2010-03-11). The default ports are 7661 for
unencrypted connections and 7961 for SSL connections. Note that 7654
seems to be used by Winamp.

Identifier Identifier that can be referenced in authorization functions to classify

connections and to define authorization based on it.

14

Draft

Configuration Draft

Name

Description

MaxConnections

(optional) The maximum number of simultaneus connections for this
socket.

Restrictions

(optional) Defines the subsection containing IP restrictions on the
connection. If not defined, the connection is allowed from everywhere. The
configuration of 1P restrictionswill be defined in the section | P restrictions.

Thefollowing Li st en configuration shows an example plain TCP/IP connection definition:

ocal host

r "Interface 1"
ons {

al | ow 192. 168. 201. 0/ 24

Server
{
Li sten
{
Addr ess |
Port 7661
Identifie
Restricti
}
}
}

3.2.2. ListenSSL

In the subsections named Li st enSSL of the server configuration we define sockets providing
secured connections with full transport layer encryption based on SSL/TLS. The following table
describes the attributes you can set for secured connections. The first five attributes are the same as

for sockets configured as

plain TCP/IP (Li st en) as shown before:

Table 3.5. ListenSSL settings

Name

Description

Address

Listening address (IPv4 or |Pv6) of the server. '127.0.0.1' and "::1' stand for
the loopback address (1Pv4 an | Pv6 respectively). The listener wildcards ™'
or '0.0.0.0' (IPv4) or "::' (IPv6) are aso accepted.

Connection port. Ports 7649-7671 and 7934-7966 are unassigned according
to IANA (last updated 2010-03-11). The default ports are 7661 for
unencrypted connections and 7961 for SSL connections. Note that 7654
seems to be used by Winamp.

Identifier

Identifier that can be referenced in authorization functions to classify
connections and to define authorization based on it.

MaxConnections

The maximum number of simultaneus connections for this port.

Restrictions Defines the subsection containing IP restrictions on the connection. If not
defined, the connection is allowed from everywhere. The configuration of
IP restrictions will be defined in the section I P restrictions.

Certificate File with the SSL certificate

Key File with the SSL key

CAdirectory Directory holding the CA certificate files.

CAchainFile SSL CA chainfile

Verify ON/OFF switch to enabe/disable client certificate verification.

15

Draft

Configuration Draft

The following configuration shows an example Li st enSSL definition:

Li st enSSL

Server
{
{
}
}

Addr ess | ocal host
Port 7961
Identifier
MaxConnecti ons 2
Certificate SSL/wol franed. crt
key SSL/wol framed. key
CAchai nFi | e SSL/ CAchai n. pem
Verify Of

3.2.3. IP restrictions

"Interface 1"

IP restrictions are defined as sub sectionr est ri ct i ons of the socket configurations (Li st ener
and Li st ener SSL) in the server configuration.

Table 3.6. Restrictions settings

Name Argument Description
Allow IP address with|Definean IP or network address asallowed to connect from,
optional network |if not explicitely defined by aDeny directive. If noal | ow
mask is specified then all IPs are allowed to connect from, if not
explicitely excluded by adeny directive. Sono al | owis
equivalenttoal | ow al |
Deny IP address with|Define an IP or network address as forbidden to connect

optional network
mask

from. If adeny directive refersto an IP explictely defined
or part of anal | owthenthedeny isstronger and overrides
theal | owdeclaration.

3.3. Logger configuration

The logger configuration is defined in the Loggi ng section. The logger is defined for different
backends. We can define several backends for the logger.

3.3.1.

Log message types and log levels

Each backend defines the level (verbosity) of logging. For the log levels we use the type of the log
message. The types of 1og messages can be listed in ascending order of their severity. Setting the log
level to atype of log message means that the system logs all messages with equal or higher severity
than the specified type. The log message types are listed in the following table. They are listed in
ascending order of severity:

Table 3.7. Log message types

Name Description
DATA2 Processing data messages, not truncated
DATA Processing data messages with big chunks truncated

16

Draft Configuration Draft

Name Description

TRACE Processing trace messages

DEBUG Debug messages

INFO Information messages

NOTICE Important information messages

WARNING Warning messages

ERROR Processing error messages

SEVERE Severe errors that should be analyzed.
CRITICAL Critical errorsthat have to notified.

ALERT Critical errorsthat haveto be escal ated to aperson responsibleimmediately.
FATAL Fatal errorsthat cause the server to shut down.

3.3.2. Log backends

In the following sub sections we list the different backends and how they can be configured.

Backend console

For defining the backend to log to console (stderr), we have to configure a subsection st der r of the
Loggi ng section. For console logging we just can define the logging level with | evel . Example
configuration:

Loggi ng
{
Stderr {
Level | NFO
}
}

Backend logfile

For defining the backend to log to afile, we have to configure asubsection LogFi | e of theLoggi ng
section. For logging to file we can define the logging level with Level and the file name with
Fi | enanme. Example configuration:

Loggi ng
{
LogFile {
Fi | enane /var/ | og/ wol franed. | og
Level NOTI CE
}
}

Backend syslog
For defining the backend to log to syslog, we haveto configure asubsection Sy s| og of theLoggi ng

section. For logging to syslog we can define the logging level with Level , the syslog facility with
Faci | i ty and theidentifier with | dent . Example configuration:

Loggi ng

17

Draft

Configuration Draft

Sysl og {

| dent wol franed
Facility LOCAL2
Level | NFO

}

Backend eventlog

On Windows we can also log to eventlog. For defining the backend to log to eventlog, we have to
configureasubsection Event | og of theLoggi ng section. For logging to eventlog we can definethe
logging level with Level , the eventlog source with Sour ce and the identifier with Nane. Example

configuration:

Loggi ng
{
Eventl og {

Narme Wl fr anme
Source wol franed
Level WARNI NG

}
3.4. Modules

The configuration of modules loaded by the server for processing are defined in the LoadMbdul es
section. The following table describes the settings in the modules:

Table 3.8. LoadM odules configuration settings

Name

Arguments

Description

Directory

path

Path to use as base path for relative modul e paths
specified with 'Modul€'. If specified as relative
path, it is relative to the directory containing
the main configuration file. If not specified, the
default module directory of Wolframeisused (for
example /ust/lib64/wolframe/modul es).

Module

path

Define a module to load by path. If the setting
'directory’ was not specified then the path is
relative to the library directory of Wolframe
(subdirectory ‘wolframe' of the user library
directory)

Example configuration:

LoadModul es
{

Directory /usr/lib/wolfrane
Modul e nod_db_post gresql
Modul e nod_aut h_textfile
Modul e nod_filter |ibxm 2

18

Draft

Configuration

Draft

3.5. Global settings

The following table describes the global settings you can configure:

Table 3.9. Global Settings

Name

Arguments

Description

ServerTokens

One of None, ProductOnly,
Major, Minor, Revision, Build,
(O]

Define what to print in the
initial greeting of the protocol
(first message of the server).
Every token above prints more
information as the previous one,
staring from 'None' which prints
nothing, to 'OS which prints
‘Wolframe version 1.4.5.22,
Linux, Ubuntu 14.04. The
default is'None'.

ServerSignature

string

Define the string to be printed
in the initial greeting of the
protocol (first message of the
server). Theserver signature gets
added to the greeting string in
brackets, for instance 'Wolframe
version 1.4.5.22, Linux, Ubuntu
14.04 (CRM)'. The default is an
empty string.

Example configuration:

Server Tokens OS

Server Si ghature "CRM

The server would send the following greeting string:

Wl frane version 1.4.5,

Li nux,

3.6. Database configuration

Ubuntu 14. 04 (CRM

The Databases for Wolframe are configured in the Dat abase section of the configuration.

3.6.1. PostgreSQL

This section explains how to configure a Postgres database.

Requirements

In order to use a Postgres database in Wolframe you have to configure the loading of the module
mod_db_postgresgl in the LoadModules section of your configuration. The addressed Postgres
database server must be running and the database and the user configured must have been created

before.

19

Draft Configuration Draft

Configuration settings

The configuration settings for PostgreSQL are splitted in two parts. The database configuration
settings and the SSL configuration settings. The following three tables show the PostgreSQL database
configuration settings, the PostgreSQL SSL configuration settings and the table with configurable
SSL modes:

Table 3.10. PostgreSQL database configuration settings

Name Parameter Description

Identifier identifier Database identifier used to reference this database.

Host host name or IP|Address of the PostgreSQL database server. Uses the unix

address domain socket if not defined.

Port number Port of the PostgreSQL database server. The default is5432.

Database identifier Name of the database to connect to

User identifier User to connect to the database with

Password string Password to connect to the database with

ConnectionTimeoutnumber Connection timeout in seconds. The default if not specified
is30 seconds. A value of '0' disables the connection timeout.

Connections number Maximum number of simoultaneus database connections
(size of connection pool). Default if not specified is 4
connections.

AcquireTimeout |number Maximum time allowed to acquire a database connection in
seconds

StatementTimeout | number The maximum alowed time to execute a statement in
milliseconds.

Table 3.11. SSL configuration settings

Name Parameter Description

SsiMode identifier How a SSL TCP/IP connection should be negotiated with
the server. Possible values and their explanation can be
found in the SSL Mode table below.

SslCert filename The file name of the client SSL certificate in case of an SSL
connection to the database.

SdKey filename The file with the secret key used for the client certificate in
case of an SSL connection to the database.

SslRootCert filename The File name of the root SSL CA certificate in case of an
SSL connection to the database.

SsICRL filename The File name of the SSL certificate revocation list (CRL)

in case of an SSL connection to the database.

Table3.12. SSL modes

Name Description

disable Only try anon-SSL connection

alow First try anon-SSL connection. If that fails, try an SSL connection

prefer First try an SSL connection. If that fails, try a non-SSL connection. This
isthe default.

require Only try an SSL connection. If a root CA file is present, verify the
certificate.

20

Draft Configuration Draft

Name Description

verify-ca Only try an SSL connection, and verify that the server. The certificate is
issued by atrusted CA.

verify-full Only try an SSL connection, verify that the server certificate isissued by a
trusted CA and that the server hostname matches that in the certificate.

Example configuration

Here follows an example PostgreSQL database configuration:

Dat abase
{
Post gr eSQL
{
I dentifier pgdb
Host | ocal host
Port 5432
Dat abase wol frane
User wol f usr
Passwor d wol f pwd
Connecti onTi meout 10
Connecti ons 40
Acqui r eTi meout 10
}
}
3.6.2. Sqglite3

This section explains how to configure a Sqglite database.

Requirements

In order to use an Sglite3 database in Wolframe you have to configure the loading of the module
mod_db_sglite3 in the LoadModules section of your configuration. The database file configured must
have been created before.

Configuration settings

The following table shows the configuration settings for a Sglite3 database in Wolframe.

Table 3.13. Sglite3 database configuration settings

Name Parameter Description

Identifier identifier Database identifier used to reference this database.

File filepath Storethe SQL ite databaseinto thefile specified asargument.
This parameter is required and the file must have been
created before.

Connections number Number of simultaneous connections to the database.

Specifies the size of the pool of connections used for
database transactions. The default number of connectionsis
4 if not configured.

ForeignKeys yes or no Settingf or ei gnKeys toyes enablesreferentia integrity
in the database. This is actually the same as executing
'PRAGMA foreign_keys=true'. The defaultisyes.

21

Draft

Configuration Draft

Name Parameter Description

Profiling yes or no Shows the SQL commands being executed and their
execution time in milliseconds. Default isno.

Extension filename L oadsthe SQL ite3 extension modul e specified as argument.

Thisisuseful to load native code into SQLite3 imlementing
for instance new database functions. Have a look at the
SQL.ite3 'Run-Time Loadable Extensions' section at http:/
www.sglite.org/loadext.html.

Example configuration

Here follows an example Sqlite3 database configuration:

Dat abase
{
SQite
{
Identifier sqglitedb
File sqglite.db
For ei gnKeys yes
Profiling no

Connecti ons 3

Ext ensi on

}
3.6.3. Oracle

sql i te_nodul e. so

This section explains how to configure an Oracle database.

Requirements

In order to use an Oracle database in Wolframe you have to configure the loading of the module
mod_db_oracle in the LoadModules section of your configuration. The addressed Oracle database
server must be running and the database and the user configured must have been created before.

Configuration settings

The following table shows the Oracle database configuration settings.

Table 3.14. Oracle database configuration settings

Name Parameter Description

Identifier identifier Database identifier used to reference this database.

Host identifier or string | Address of the Oracle database server

Port number Port of the Oracle database server, the default is 1521 if not
specified

Database identifier Name of the database to connect to, thisis the Oracle SID.

User identifier User to connect to the database with

Password string Password to connect to the database with

Connections number Maximum number of simultaneous database connections
(size of connection pool)

22

http://www.sqlite.org/loadext.html
http://www.sqlite.org/loadext.html

Draft

Configuration Draft

Name

Parameter

Description

AcquireTimeout

number

Maximum time allowed to acquire a database connection in
seconds

Example configuration

Here follows an example Oracle database configuration:

Dat abase

{

Oracl e

{

Identifier
Host

Port

Dat abase

User

Passwor d
Connecti ons
Acqui r eTi neout

or adb

| ocal host
1521

orcl
wol f usr
wol f pwd
10

10

23

Draft Draft

Chapter 4. AAAA

4.1. Introduction

AAAA isan acronym for authentication,authorization, accounting and auditing. The different aspects
of AAAA in the application are linked together as they all are based on the identity of the user.
The identitiy of a user is authenticated after his login. Depending on the identity and the method
the user was authenticated, he gets privileges to access resources or execute procedures. Wolframe
provides hooksfor calling authorization to enforce checks of these privileges. Every request and every
transaction can be bound to authorization. Every function executed can use authorization functions
to check privileges.

Accounting and auditing functions use the identity of the user to log the actions of a session.

4.2. Embedding AAAA into an existing
Infrastructure

Wolframe defines authentification methods as configurable modules. New modules can be added
easily. Authorization and auditing calls are implemented as ordinary functions that can be written
in any language that has bindings for Wolframe. A layer inbetween declares what data of the users
context is passed to authorization or audit/accounting functions. This makes it easy to enforce rules
how to handle sensible login datain a controlled way.

4.3. AAAA configuration

The configuration section AAAA bundles the definition of mechanisms and resources needed for
AAAA.

The following example shows an empty AAAA configuration section:

AAAA
{

;... configuration for

; aut henti cati on, aut hori zati on, audi ti ng and accounti ng
}

4.4. Authentication

Theidentitiy of auser isauthenticated after hislogin. Theidentity and the method he was The aspect of
authentication is configured in the subsection Aut hent i cat i on of the AAAA section in the server
configuration.

4.4.1. Requirements

In order to use authentication in Wolframe you have to configure the loading of the module
implementing it. The authentication mech explained here as example is implemented in the module
mod_auth_textfile. For using it you have to declare the module nod_aut h_textfil e in the
LoadModul es section of your configuration before.

4.4.2. Configuration settings

The following table shows the configuration settings for Authentication in Wolframe.

24

Draft AAAA Draft

Table 4.1. Authentication configuration settings

Name Parameter Description

RandomDevice |addressor path Specifies the random device to be used. This configuration
setting is optional. The system should have a reasonable
default for most applications.

Textfile section Specifiesthe block with the configuration for authentication
based on a textfile with WOLFRAME-CRAM as
authentication mech.

4.4.3. Example configuration

The following example shows an Aut henti cati on configuration with the Wolframe textfile

authentication module that provides an authentication over the "WOLFRAME-CRAM" protocol:

AAAA

{

Aut henti cati on
{
randonDevi ce /dev/urandom
TextFile
{
identifier "TextFileAuth"
file /var/tnp/wol frame. auth
}
}
4.4.4. Authentication mechs

Currently only the authentication protocol for WOLFRAME- CRAM is implemented. The client can

choose between no authentication (if configured to allow no authentication) or WOL FRANMVE- CRAM

Y ou configure it as shown in the example above. For the setup of a client see the chapter "Clients".

4.4.5. Development status

We are currently developing other authentication methods like PAM SASL and database based
authentication implementing WOL FRAME- CRAM
. They will be subject of the next release.

4.5. Authorization

4.5.1.

Authorizationin Wolframe hastwo levels. Thefirst level isauthorization based on connectioninfo, e.g.
isaclient allowed/denied to connect from acertain ip or network. Connection info based authorization
happens on connect to the server.

The second level is command authorization based on identity (user attributes, connection
characteristics) that isdone on execution of afunction. Identity based authorization can can be defined
for the access of resources. It'sis up to us to define the access control matrix

Authorization based on connection info

The authorization based on connection info is implemented in the server configuration as IP
restrictions (see chapter "IP restrictions’).

25

Draft

AAAA Draft

4.5.2.

4.5.3.

Authorization based on identity

Authorization The aspect of authorization is configured in the subsection Aut hori zati on of
the AAAA section in the server configuration. The only working configuration is the default
Aut hori zat i on configuration with the setting to allow access to anybody authenticated that is not
explicitely denied:

AAAA
{
Aut hori zati on
{ Aut hori zation {
default allow
}
}

Command execution authorization

Development status

The command execution authorization is not implemented yet completely. The idea is to have
programs that map authorization function calls to Wolframe function calls. The language to describe
these programs is not yet defined. The mechanism to map the authorize requests to the function calls
already exists. Authorization based on command execution will be a subject of the next release.

4.6. Auditing and accounting

4.6.1.

The aspect of auditing and accounting is configured in the subsection Audi t of the AAAA section
in the server configuration. Accounting is a sub aspect of auditing. The audit (and accounting) calls
areimplemented as normal Wolframe function calls. The configuration defines additional parameters
depending on the authentication status for the audit function calls and resources to be referenced.
The following example shows an Audi t configuration with the setting use the textfile /var/tmp/
wolframe.audit as audit log:

AAAA
{
Audi t
{
TextFile
{ file /var/tnp/wol franme. audit
}
}
}

Development status

The mechanism of auditing, the calling of audit functions and their declaration in the transaction layer
isimplemented and tested. The underlaying methods, for exampleto log to atext file as configured in
the example above is not yet implemented, but is subject of the next release.

26

Draft Draft

Chapter 5. Data processing

In the this chapter we will see how application server requests look like. We will have a look at the
Wolframe standard command handler that handles the requests and how it is configured. Then we
will show how to write programs that declare the functions executing the requests and how you link
them to your application. Finally we will describe the tools availablein Wolframe for defect handling
and testing.

5.1. Processor Configuration

The processing of application server requests is configured in the section Pr ocessor of the server
configuration. The following example shows an empty Pr ocessor configuration section:

Processor

{
}

;... processing configuration

5.2. Application Server Requests

Wolframe application server requests consist of a named command and a structured content
(document) as argument.

The following illustration shows the processing of one client request to the server. A call of the
Wolframe logic tier gets to a command handler that calls functions given by the provider to perform
the transaction requested.

Figure5.1. Overview

Request Answer
(XML,JSON,CSV,etc..) | (Format same as Request

s N

| Command Handler |

Provider

N
(Form Function \
\ (TDL,Python,.NET,Lua)/,‘

27

Draft Data processing Draft

5.3. Command handler

Command handlers define the mapping of server requests to functions to execute. This chapter
introduces the standard command handler.

5.3.1. The standard command handler

Introduction

The Wolframe standard command handler is caled directmap and named so in the configuration
because it only declares a redirection of the commands to functions based on the document type and
the command identifier specified by the client in the request.

The declarations of the Wolframe Standard Command Handler (directmap) are specified in aprogram
source file with the extension ".dmap' that is declared in the configuration.

Example configuration

The following annotated configuration example declares (1) a program exanpl e. t dl written in
the transaction definition language (TDL) to contain the function declarations that can be called by
the command handler. It (2) declares the database with name pgdb to be used as the database for
transactions. It (3) loads adescription exanpl e. drmap that will declare the mappings of commands
to the filters used and functions called. It (4) specifies the filter with name libxml2 to be used for
documents of format XML and (5) the filter with name cjson to be used for documents of format
JSON, if not specified elsein exanpl e. dirap.

; Sinple Data Processing Configurati on Exanpl e

Processor

{
; Prograns to | oad:
Program exanpl e. t dl ; (1) a programwith functions (in TDL)
Dat abase pgdb ; (2) references transaction database

; Command handl ers to | oad:

Crrdhandl er
{
Di rect map ; the standard conmand handl er
{
Pr ogr am exanpl e. dmap ; (3) description of comand nappi ngs
Filter XM.=libxm 2 ; (4) std filter for XML docunent format
Filter JSON=cjson ; (5) std filter for JSON docunent format
}
}

Example command description

The following source example could be one of the exanpl e. dmap in the configuration example
introduced above. It defines two commands. The first one links a command "insert" with document
type "Customer" as content to a transaction function "dolnsertCustomer". The content is validated
automatically against a form named "Customer" if not explicitly defined else. The command has no
result except that it succeeds or fails. The second example command links a command "get" with

28

Draft Data processing Draft

a document type "Employee” to a function "doSelectEmployee”. The input is not validated and the
transaction output is validated and mapped through the form "Employee”.

COWAND i nsert Custoner CALL dol nsert Customer;
COMWAND get Enpl oyee SKI P CALL doSel ect Enpl oyee RETURN Enpl oyee;

Command description language

A command map description file like our example shown consists of instructions started with
COMVAND and terminated by semicolon *;'. The first argument after COMMAND is the name of the
command followed by the name of the document type of the input document. The name of the
command is optional. If not specified the first argument after COMMAND names the input document
type.

Keywords

Conflicts with keywords and names are solved by using strings instead of identifiers. The standard
command handler description language has the following keywords:

COMMAND
CALL
CONTEXT
RETURN
SKIP
FILTER
INPUT
OUTPUT
AUTHORIZE

Simple document map

The following example shows the simplest possible declaration. It states that documents with the
document type "Document” are forwarded to a function with the same name "Document”.

COVWAND Docurent ;

Command with action prefix

The next example adds a action name to the declaration. The implicit name of the function called is
insertDocument:

COVMAND i nsert Docunent ;

Explicit function name declaration

For declaring the function called explicitly like for example a function dol nser t Docunent we
need to declareit with CALL <f uncti onname>:

29

Draft Data processing Draft

COVMAND i nsert Docunent CALL dol nsert Docunent;

Returned document declaration

The document type returned is specified with RETURN <doct ype>:

COMVAND process Docunent RETURN Docunent ;

or with explicit naming of afunction called

COWAND process Docunent CALL doProcessDocunent RETURN Docunent;

Returned document meta data

We can define additional document meta data or overload existing document meta or inherited
document meta from input or a referenced form in the output. This is done with a comma separated
list of attribute assignmentsin curly brackets after the document type name like:

COMVAND pr ocess Docunent
CALL doPr ocessDocunent
RETURN Docunent { root = 'doc', schena = 'bla.com schema' };

Skipping the document validation
If you want to skip the input document validation, either because you are dealing with legacy software

where a strict definition of a schema is not possible or because the function called has strict typing
and validates the input on its own (.NET,C++), then you can add a declaration SKI P:

COWMAND process Docunent SKIP
CALL doProcessDocunment RETURN Document ;

The sameyou can specify for the output with a SKI P following the RETURN of the output declaration:

COMVAND process Docunent
CALL doProcessDocunment RETURN SKI P Document ;

30

Draft Data processing Draft

For being able to skip validation of output of a processed XML we have additionally to specify the
root element as document meta data. This defintion can be part of a form declaration (not used for
validation) or it can be specified after the RETURN SKI P and the document type identifier in a
standard command handler instruction. The following example shows such a definition with 'list' as
root element defined. Such acommand definition makes sensefor strongly typed languageslike .NET
or native C++ where data validation can be delagated completely to the strongly typed structure
definition of the called function.

COMVAND process Docunent
CALL doProcessDocunment RETURN SKI P Docunent {root='list'};

Return a standalone document
If we want to return a document as standalone (standalone="yes" in the header in case of XML)

without validation, we have to declare this with explicit document meta data as RETURN SKI P
{standal one='yes' ,root="root'}.

COMVAND process Docunent
CALL doPr ocessDocunent
RETURN SKI P {standal one="'yes' ,root="1list'};

Explicit filter definitions for a command
For most processing it's enough to declare the standard filters in the configuration of the command
handler. But in certain cases we want to declare a filter explicitly for a command, for example to
preprocess a certain document type with an XSLT filter. Explicitly declared filters aways refer to
a document format and documents of other formats have to be converted first or they cannot be
preprocessed. The conversions mechanismswe will explain in detail later. Explicit filter declarations
are done with
* FILTER <name> or
e FILTER I NPUT <i nputfilternanme>or
 FILTER QUTPUT <out putfilternane>or
 FILTER I NPUT <inputfiltername> OUTPUT <outputfilternane>

Here isan example:

COWWAND process Docunent FILTER I NPUT nyXsltlnputFilter
CALL doProcessDocunment RETURN Document ;

Authorization checks

We can tag a command to be allowed only after an authorization check. The check denies command
execution with an error if the login of the user does not allow the execution of the command. The call

31

Draft Data processing Draft

isthesame asin TDL for example. Authorization checks are triggered by the AUTHORIZE attribute
with one or two arguments as follows:

 AUTHORI ZE <aut hf unc> or

 AUTHORI ZE <aut hf unc> <r esource>

Adding parameters from the execution context

Wolframe functions that are written in a language other than C++ are usually pure datain / data out
functions. So the input document defines the input. But sometimes we need to include data from the
user context into processing, for example for inserting or editing some personal data. Wolframe gives
us the possibility to include data from the execution context into the input document. We do this with
the directive CONTEXT followed by alist of comma’,' separated assignments in curly brackets '{"
'}'. The following example adds an element 'uname’ that does not exist yet in the input to the input
document before execution (after validation). The value of the add 'uname’ element is the user name
of the user issuing the request.

COWAND i nsert UserData CONTEXT { unane = User Nane }
CALL dol nsert User Dat a;

Thisway we keep the processing functions as pure datafunctions. We arein certain cases ableto inject
some login dependent datain a controlled way, without exposing an API to all language bindings for
being able to access everything from everywhere.

Using brackets

For better readability you can use optional '(**)' brackets on the arguments of the command declaration:

COWAND (process Docunent)
FI LTER I NPUT nyXsltlnputFilter CALL doProcessDocunent
RETURN Docunent ;

Overview
Each command declaration has as aready explained the form
« COVWAND <doct ype> [OPTI ONS] ; or
e COVWAND <action> <doctype> [OPTI ONS] ;

The following table shows an overview of the elements that can be used in the [OPTI ONS] part of
the command:

Table5.1. Options

Keywords Arguments Description

CALL Function Name Names the function to be called
for processing the request

RETURN Document Type Specifies the type of the
document returned and forces
validation of the output

32

Draft

Data processing

Draft

Keywords

Arguments

Description

RETURN SKIP

Document Type

Specifies the type of the

document returned but skips
validation of the output

SKIP (no arguments) Specifies the input document

validation to be skipped

Specifies that the filter <Name>
should be used as input filter

Specifies that the filter <Name>
should be used as output filter

Specifies that the filter <Name>
should be used both as input and
output filter

Specifies that the function
<func> should be called with the
resource <res> to check if the
user is allowed to execute the
command.

FILTER INPUT Filter Name

FILTER OUTPUT Filter Name

FILTER Filter Name

AUTHORIZE func res

5.4. Functions

This chapter describes how functions are linked to the logic tier. It gives an overview on the language
bindings available for Wolframe.

For defining database transactions Wolframe introduces a language called TDL (Transaction
Definition Language). TDL embeddes the language of the underlaying database (SQL) in alanguage
that defines how sets of elements of input and output are addressed.

This chapter also describes how data types are defined that can be used in data definion languages
(DDL) for form desciptions. Forms and their definition will be introduced in a different chapter.

After reading this chapter you should be abl e to write functions of the Wolframelogic tier onyour own.

Be aware that you have to configure a programming language of the logic tier in Wolframe before
using it. Each chapter introducing a programming language will have a section that describes how the
server configuration of Wolframe has to be extended for its availability.

5.4.1. Transactions in TDL

Introduction

For the description of transactions Wolframe provides the transaction definition language (TDL)
introduced here. Wolframe transactions in TDL are defined as functions in a transactional context.
This means that whatever is executed in atransaction function belongs to a database transaction. The
transaction commit is executed implicitely on function completion. Errors or a denied authorization
or afailing audit operation lead to an abort of the database transaction.

A TDL transaction function takes a structure as input and returns a structure as output. The Wolframe
database interface defines a transaction as object where the input is passed to as a structure and the
output is fetched from it as a structure.

TDL isalanguage to describe the building of transaction input and the building of the result structure
from the database output. It defines a transaction as a sequence of instructions on multiple data.
An ingtruction is either described as a single embedded database command in the language of the
underlying database or a TDL subroutine call working on multiple data.

33

Draft Data processing Draft

Working on multiple data meansthat the instruction is executed for every item of itsinput set. This set
can consist of the set of results of a previous instruction or a selection of the input of the transaction
function. A "for each” selector defines the input set as part of the command.

Each instruction result can be declared as being part of the transaction result structure. The language
has no flow control based on state variables other than input and results of previous commands and
is therefore not a general purpose programming language. But because of this, the processing and
termination of the program is absolutely predictable.

As possibility to convert the input data before passing it to the database, the transaction definition
language defines a preprocessing section where globally defined Wolframe functions can be called for
the selected input. To build an output structure that cannot be model ed with alanguage without control
structures and recursion, TDL provides the possibility to define afunction asfilter for postprocessing
of the result of the transaction function. Thisway it is for example possible to return atree structure
as TDL function result.

The TDL is - as most SQL databases - case insensitive. For clearness and better readability TDL
keywords are written in uppercase here. We recommend in general to use uppercase letters for TDL
keywords. It makes the source more readable.

Some internals

TDL iscompiled to acodefor avirtual machine. Setting thelog level to DATA will print the symbolic
representation of the code as log output. The internals of the virtual machine will be discussed in a
different chapter of this book.

Configuration

Each TDL program source referenced has to be declared in the Processor section of the
configuration with pr ogr am <sour cefi | e>.

Language description

A TDL program consists of subroutine declarations and exported transaction function declarations.
Subroutines have the same structure as transaction function blocks but without pre- and postprocessing
and authorization method declarations.

Subroutines

A subroutine declaration starts with the Keyword SUBROUTI NE followed by the subroutine name
and optionally some parameter namesin brackets ('(')") separated by comma. The declared subroutine
name identifies the function in the scope of this sourcefile after this subroutine declaration. The name
is not exported and the subroutine not available for other TDL modules. With includes described later
we can reuse code. The body of the function contains the following parts:

» DATABASE <dat abase nane |ist>

This optional definition is restriction the definition and availability of the function to a set of
databases. The databases arelisted by name separated by commal(’,). The namesarethedatabaseid's
defined in your server configuration or database names as specified in the module. If the database
declaration is omitted then the transaction function is avaiable for any database. This declaration
allows you to run your application with configurations using different databases but sharing a
common code base.

e BEGAN <...instructions...> END

The main processing block starts with BEG N and ends with END. It contains all the commands
executed when calling this subroutine from another subroutine or a transaction function.

34

Draft

Data processing Draft

The following pseudocode example shows the parts of a subroutine declaration:

SUBRQUTI NE <nane> (<paraneter nane list>)
DATABASE <l i st of database nanes>
BEG N
..<instructions>. ..
END

The DATABASE declaration is optional .

Transaction function declarations

A transaction function declaration starts with the Keyword TRANSACTI ON followed by the name of
the transaction function. This name identifies the function globally. The body of the function contains
the following parts:

AUTHORI ZE (<aut h-function>, <auth-resource>)

Thisoptional definition isdealing with authorization and accessrights. If the authorization function
fails, thetransaction function is not executed and returnswith error. The <auth-function> references
aform function implementing the authorization check. The <auth-resource> is passed as parameter
with name 'resource’ to the function.

DATABASE <dat abase nane |ist>

This optiona definition is restriction the definition and availability of the function to a set of
databases. The databases are listed by name separated by comma (',"). The names are the database
id's defined in your server configuration. If the database declaration is omitted then the transaction
function is avaiable for any database. This declaration allows you to run your application with
configurations using different databases but sharing a common code base.

RESULT FILTER <post-filter-nane>

This optional declaration defines a function applied as post filter to the transaction function. The
ideaisthat you might want to return a structure as result that cannot be built by TDL. For example
arecursive structure like atree. The result filter function is called with the structure printed by the
main processing block (BEGIN .. END) and the result of thefilter function is returned to the caller
instead.

PREPRCC <...instructions...> ENDPROC

This optional block contains instructions on the transaction function input. The result of these
preprocessing instructions are put into the input structure, so that they can be referenced in the main
code definition block of the transaction. We can call any global normalization or form function in
the preprocessing block to enrich or transform the input to process.

BEG N <...instructions...> END

The main processing block starts with BEA N and ends with END. It contains all the database
instructions needed for completing this transaction.

AUDIT [CRITI CAL] <funcnane...> WTH BEG N <...instructions...> END

This optional block specifies afunction that is executed at the end of atransaction. Theinput of the
function is the structure built from the output of the instructions block. If CRITICAL is specified
then the transaction fails (rollback) if the audit function fails. Otherwise there is just the error of
the audit function logged, but the transaction is completed (commit). Y ou can specify several audit
functions. The variables in the instructions block refer to the scope of the main processing block.

35

Draft

Data processing Draft

So you can reference everything that is referencable after the last instruction of the main processing
block.

« AUDIT [CRITICAL] <funcname...> (<...paraneter...>)
If the input structure of the audit function is just one parameter list this aternative syntax for an

audit function declaration can be used. Y ou simply specify the audit function call after the AUDIT
or optionally after the CRITICAL keyword.

The following pseudo code snippet shows the explained building blocks in transaction functions
together:

TRANSACTI ON <name>
AUTHORI ZE (<aut h-function>, <auth-resource>)
DATABASE <l i st of database nanes>
RESULT FILTER <post-filter-name>
PREPRCC
.. <preprocessing instructions>. ..
ENDPROC
BEG N
..<instructions>...
END
AUDI T CRITI CAL <funcname> (...<paraneter>...)

The lines with AUTHORIZE,DATABASE and RESULT FILTER are optional. So is the

preprocessing block PREPROC..ENDPROC. A simpler transaction function looks like the following:

TRANSACTI ON <nane>
BEG N

..<instructions>. ..
END

Main processing instructions

Main processing instructions defined in the main execution block of a subroutine or transaction

function consist of three parts in the following order terminated by a semicolon ;' (the order of the

INTO and FOREACH expression can be switched):

e | NTO <result substructure nanme>

This optional directive specifies if and where the results of the database commands should be
put into as part of the function output. In subroutines this substructure is relative to the current
substructure addressed in the callers context. For example a subroutine with an "INTO myres'
directivein ablock of an"INTO output” directive will write its result into a substructure with path
"output/myres".

e FOREACH <sel ect or >

Thisoptional directive defines the set of elements on which the instruction is executed one by one.
Specifying aset of two elementswill causethe function to be called twice. An empty set asselection
will cause the instruction to be ignored. Without quantifier the database command or subroutine
call of theinstruction will be always be executed once.

36

Draft Data processing Draft

Theargument of the FOREACH expressioniseither areferenceto theresult of apreviousinstruction
or a path selecting a set of input elements.

Results of previous instructions are referenced either with the keyword RESULT referring to the
result set of the previous command or with a variable naming a result set declared with this name
before.

Input elementsare sel ected by path relative to the path currently selected, starting from theinput root
element when entering atransaction function. The current path sel ected and the base element of any
relative path calculated in this scope changes when a subroutine is called in a FOREA CH selection
context. For example calling asubroutine in a'FOREACH person' context will cause relative paths
in this subroutine to be sub elements of ‘person'.

DO <conmmand>

Commandsin aninstruction are either embedded database commands or subroutine calls. Command
arguments are either constants or rel ative paths from the selector path inthe FOREA CH selection or
referring to elementsin the result of a previous command. If an argument is arelative path from the
selector context, its reference hasto be uniquein the context of the element selected by the selector.
If an argument references a previous command result it must either be unique or dependent an the
FOREACH argument. Results that are sets with more than one element can only be referenced if
they are bound to the FOREACH quantifier.

Main processing example

The following example illustrate how the FOREACH,INTO,DO expressions in the main processing
block work together:

TRANSACTI ON i nsert Cust oner Addr esses
BEG N
DO SELECT id FROM Cust oner
VWHERE narme = $(custoner/nane);
FOREACH / cust oner / addr ess
DO | NSERT | NTO Address (i d, address)
VALUES ($RESULT.id, $(address));
END

Preprocessing instructions

Preprocessing instructions defined in the PREPROC execution block of atransaction function consist
similar to the instructions in the main execution block of three partsin the following order terminated
by a semicolon ';' (the order of the INTO and FOREACH expression can be switched and has no
meaning, e.g. FOREACH..INTO == INTO..FOREACH):

e | NTO <result substructure nanme>

This optional directive specifiesif and where the results of the preprocessing commands should be
put into as part of the input to be processed by the main processing instructions. The relative paths
of the destination structure are calculated relative to a FOREACH selection element.

e FOREACH <sel ect or >

This optional directive defines the set of elements on which the instruction is executed one by one.
The preprocessing command is executed once for each element in the selected set and it will not
be executed at all if the selected set is empty.

37

Draft Data processing Draft

DO <command>

Commands in an instruction are function calls to globally defined form functions or normalization
functions. Command arguments are constants or relative paths from the selector path in the
FOREACH selection. They are uniquely referencing elementsin the context of a selected element.

Preprocessing example

Thefollowing exampleillustrate how the"FOREACH, INTO, DO" expressionsin themain processing
block work together:

TRANSACTI ON i nsert Per sonTer ns
PREPROC
FOREACH // address/* I NTO nornalized
DO nornal i zeSt ruct ureEl enents(.);
FOREACH //id I NTO nornalized
DO nornal i zeNunber (.);
ENDPROC
BEG N
DO UNI QUE SELECT id FROM Person
VWHERE name = $(person/nane);
FOREACH // nornal i zed DO
| NSERT | NTO SearchTerm (id, val ue)
VALUES ($RESULT.id, $(.));
END

Selector path

An element of the input or a set of input elements can be selected by a path. A path is a sequence of
one of the following elements separated by slashes:

* ldentifier
An identifier uniquely selects a sub element of the current position in the tree.

o *

Anp asterisk selects any sub element of the current position in the tree.

Two dotsin arow select the parent element of the current position in the tree.

One dots selects the current element in the tree. This operator can also be useful as part of a path
to force the expression to be interpreted as path if it could also be interpreted as a keyword of the
TDL language (for example . / RESULT).

A dlash at the beginning of a path selects the root element of the transaction function input tree. Two
subsequent slashes express that the following nodeis (transitively) any descendant of the current node
inthetree.

Paths can appear as argument of aFOREA CH selector wherethey specify the set of elementson which
the attached command is executed on. Or they can appear as reference to an argument in a command
expression where they specify uniquely one element that is passed as argument to the command when
it is executed.

38

Draft Data processing Draft

When used in embedded database statements, selector paths are referenced with $(<pat h
expr essi on>) . When used as database function or subroutine call arguments path expressions can
be }J_sed in plain without '$ and '(')" markers. These markers are just used to identify substitution
entities.
Path expression examples
The following list shows different ways of addressing an element by path:
o/
Root element
e /organi zati on
Root element with name "organization"
e /organi zation/ address/city
Element "city" of root "organization" descendant "address"
e .//id
Any descendant element with name "id" of the current element
* //person/id
Child with name "id" of any descendant "person” of the root element
«//id
Any descendant element with name "id" of the root element

e /address/*

Any direct descendant of the root element "address’

Currently selected element
Path usage example

This example shows the usage of path expression in the preprocessing and the main processing part
of atransaction function:

TRANSACTI ON sel ect Per son
PREPROC
FOREACH / per son/ nane
I NTO normal i zed DO normalizeName(.);
FOREACH / per son
I NTO citycode DO getCityCode(city);
ENDPROC
BEG N
FOREACH person
DO | NSERT | NTO Person (Name, Nor mal i zedNane, Ci t yCode)
VALUES ($(nane), $(name/ normal i zed), $(ci tycode));
END

39

Draft Data processing Draft

Referencing Database Results

Database results of the previousinstruction are referenced with a'$RESULT.' followed by the column
identifier or column number. Column numbers start always from 1, independent from the database!
So be aware that even if the database counts column from 0 you haveto use 1 for the first column.

As aready explained before, database result sets of cardinality bigger than one cannot be addressed if
not bound to a FOREA CH selection. | n statements potentially addressing more than one result element
you have to add a FOREACH RESULT quantifier.

For addressing results of instructions preceding the previous instruction, you have to name them (see
next section). The name of the result can then be used as FOREACH argument to select the elements
of a set to be used as base for the command arguments of the instruction. Without binding instruction
commands with a FOREACH quantifier the named results of an instruction can be referenced as
$<nane>. <col ummr ef >, for exampleas$per son. i d for the column with name'id' of theresult
named as 'person’.

The 'RESULT.' prefix in references to the previous instruction result is a default and can be omitted
in instructions that are not explicitly bound to any other result than the last one. So the following two
instructions are equivalent:

DO SELECT nanme FROM Conpany
WHERE id = $RESULT.i d

DO SELECT nanme FROM Conpany
WHERE id = $id

and so are the following two instructions:

FOREACH RESULT
DO SELECT nane FROM Conpany
WHERE id = $RESULT.i d
FOREACH RESULT
DO SELECT nane FROM Conpany
VWHERE id = $id

The result name prefix of any named result can also be omitted if the instruction is bound to a
FOREACH selector naming the result. So the following two statements in the context of an existing
database result named "ATTRIBUTES" are equivalent:

FOREACH ATTRI BUTES
DO SELECT nane FROM Conpany
VWHERE id = $ATTRI BUTES. i d
FOREACH ATTRI BUTES
DO SELECT nane FROM Conpany
WHERE id = $id

Naming database results

Database results can be hold and made referenceable by name with the declaration KEEP AS
<r esul t nane> followingimmediately theinstruction with theresult to be referenced. Theidentifier
<resultname> references the result in a variable reference or a FOREACH selector expression.

40

Draft Data processing Draft

Named Result Example

This exampleillustrates how aresult is declared by name and referenced:

TRANSACTI ON sel ect Devi ces
BEG N
DO SELECT id FROM Devl dvap
VWHERE name = $(device/ nane);
KEEP AS dev;
FOREACH dev
DO SELECT key, nane, regi stration
FROM Devi ces WHERE si d=$i d;
END

Referencing Subroutine Parameters

Subroutine Parameters are addressed like results but with the prefix PARAM instead of RESULT. or
anamed result prefix. "PARAM." isreserved for parameters. Thefirst instruction without FOREACH
quantifier can reference the parameters without prefix by name.

SUBROUTI NE sel ect Devi ce(id)
BEG N
I NTO devi ce
DO SELECT nane FROM Devl dvap
VWHERE id = $PARAM i d;
END

TRANSACTI ON sel ect Devi ces
BEG N

DO sel ectDevice(id);
END

Constraints on database results

Database commands returning results can have constraints to catch certain errors that would not be
recognized at all or too | ate otherwise. For exampl e atransaction having aresult of apreviouscommand
as argument would not be executed if the result of the previous command is empty. Nevertheless
the overall transaction would succeed because no database error occurring during execution of the
commands defined for the transaction.

Constraints on database results are expressed as keywords following the DO keyword of an instruction
in the main processing section. If a constraint on database results is violated the whole transaction
faillsand arollback occurrs.

The following list explains the result constraints available;
* NONEMPTY

Declares that the database result for each element of the input must not be empty.
« UNI QUE

Declares that the database result for each element of the input must be unique, if it exists. Result
sets with more than one element are refused but empty sets are accepted. If you want to declare

41

Draft Data processing Draft

each result to have to exist, you have to put the double constraint "UNIQUE NONEMPTY" or
"NONEMPTY UNIQUE".

Example with result constraints

This example illustrates how to add result constraint for database commands returning results:

TRANSACTI ON sel ect Cust oner Addr ess
BEG N
DO NONEMPTY UNI QUE SELECT id FROM Cust oner
WHERE nane = $(custoner/namne);
I NTO addr ess
DO NONEMPTY SELECT street,city, country
FROM Address WHERE id = $id;
END

Rewriting error messages for the client

Sometimes internal error messages are confusing and are not helpful to the user that does not have
a deeper knowledge about the database internals. For a set of error types it is possible to add a
message to be shown to the user if an error of a certain class happens. The instruction ON ERROR
<errorclass> H NT <nessage>; following adatabase instruction catches the errors of class
<errorclass> and add the string <message> to the error message show to the user.

We can have many subsegquent ON ERROR definitions in arow if the error classes to be caught are
various.

Database error HINT example

The following example shows the usage HINTS in error cases. It catches errors that are constraint
violations (error class CONSTRAINT) and extends the error message with a hint that will be shown
to the client as error message:

TRANSACTI ON i nsert Cust oner
BEG N
DO | NSERT | NTO Custoner (nane) VALUES ($(nane));
ON ERROR CONSTRAI NT
H NT "Custoners mnmust have a uni que nane.";
END

On the client side the following message will be shown:

uni que constaint violation in transaction 'insertCustoner'
-- Custoners nust have a uni que nane.

substructures in the result

We already learned how to define substructures of the transaction function result with the RESULT
I NTOdirective of a TRANSACTION. But we can also define a scope in the result structure for sub
blocks. A sub-block in the result is declared with

42

Draft Data processing Draft

I NTO <resul ttag>
BEG N

..<instruction list>. ..
END

All the results of the instruction list that get into the final result will be attached to the substructure
with name <resulttag>. The nesting of result blocks can be arbitrary and the path of the elementsin
the result follows the scope of the sub-blocks.

Explicit sefinition of elements in the result

The result of atransaction consists normally of database command results that are mapped into the
result with the attached INTO directive. For printing variable values or constant values you can in
certain SQL databases use a select constant statement without specifying atable. Unfortunately select
of constants might not be supported in your database of choice. Besides that explicit printing seemsto
be much more readable. The statement | NTO <resul ttag> PRI NT <val ue>; printsavalue
that can be a constant, variable or an input or result reference into the substructure named <resulttag>.
The following artificial exampleillustrates this.

TRANSACTI ON doPri nt X
BEG N
I NTO person
BEG N
I NTO name PRINT "jussi';
INTOid PRINT "1';
END
END

Database specific code

TDL allows the support of different transaction databases with one code base. For example one for
testing and demonstration and one for the productive system. We can tag transactions,subroutines
or whole TDL sources as beeing valid for one or alist of databases with the command DATABASE
followed by acomma separated list of database names as declared in the configuration. The following
exampl e declares the transaction function 'getCustomer’ to be valid only for the databases DB1 and
DBtest.

TRANSACTI ON get Cust oner
DATABASE DB1, DBt est
BEG N
I NTO cust oner
DO SELECT * FROM Cust oner Dat a
WHERE | D=$(i d);
END

The following example does the same but declares the valid databases for the whole TDL file. In this
case the database declaration has to appear asfirst declaration in thefile.

43

Draft

Data processing Draft

Subrout

Includes

DATABASE DB1, DBt est

TRANSACTI ON get Cust oner
BEG N
I NTO cust omer DO SELECT *
FROM Cust omer Dat a WHERE | D=$(i d);
END

ine templates

To reuse code with different context, for example for doing the same procedure on different tables,
subroutine templates can be defined in TDL. Subroutine templates become useful when we want
to make items instantiable that are not allowed to be dependent on variable arguments. Most SQL
implementations for example forbid tables to be dependent on variable arguments. To reuse code
on different tables you can define subroutine templates with the involved table names as template
argument. Thefollowing example definesatransaction using the template subroutineinsertintoTree on
atable passed astemplate argument. The subroutine template arguments are substituting the identifiers
in embedded database statements by the passed identifier. Only whole identifiers and not substrings
of identifiers and no string contents are substituted.

TEMPLATE <Tr eeTabl e>
SUBROUTI NE i nsertlntoTree(parentl D)
BEG N
DO NONEMPTY UNI QUE SELECT rgt FROM TreeTabl e
WHERE | D = $PARAM par ent | D;
DO UPDATE TreeTabl e
SET rgt = rgt + 2 WHERE rgt >= $1;
DO UPDATE TreeTabl e
SET Ift = 1ft + 2 WHERE I ft > $1;
DO | NSERT | NTO TreeTable (parentID, |ft, rgt)
VALUES ($PARAM parent|D, $1, $1+1);
DO NONEMPTY UNI QUE SELECT ID AS "ID' from TreeTabl e
WHERE | ft = $1;
END

TRANSACTI ON addTag
BEG N
DO i nsert | ntoTree<TagTabl e>($(parent| D))
DO UPDATE TagTabl e
SET nane=$(nane), descri pti on=$(descri ption)
VWHERE | D=$RESULT. i d;
END

TDL has the possibility to include files for reusing subroutines or subroutine templates in different
modules. The keyword INCLUDE followed by the name of the relative path of the TDL file without
theextension .tdl includesthe declarations of theincluded file. The declarationsin theincluded fileare
treated asthey would have been madein theincluding fileinstead. The following example swhowsthe

44

Draft Data processing Draft

use of include. We assume that the subroutine template i nser t | nt oTr ee of the example before

isdefined in aseparate includefilet r eeQper ati ons. t dl located in the same folder asthe TDL
program.

| NCLUDE t reeQperati ons

TRANSACTI ON addTag
BEG N
DO i nsertlntoTree<TagTabl e>($(parentlD))
DO UPDATE TagTabl e
SET nanme=$(nane), descri pti on=%$(descri ption)
WHERE | D=$RESULT. i d;
END

Auditing

TDL defines hooksto add function calls for auditing transactions. An audit call isaform function call
with a structure build from transaction input and some database results. An auditing function call can
be marked as critical, so that the final commit is dependent not only on the transaction success but
also on the success of the auditing function call. The following two examples show equivalent calls
of audit. One with the function call syntax for calls with aflat structure (only atomic parameters) as
parameter and one with the parameter build from aresult structure of aBEGIN..END block executed.
The later one can be used for audit function calls with a more complex parameter structure.

Audit example with function call syntax

TRANSACTI ON dol nsert User
BEG N
DO | NSERT I NTO Users (nane) val ues ($(nane));
DO SELECT id FROM Users WHERE nane = $(nane);
END

AUDI T CRITICAL auditUserlnsert($RESULT.id, $(nane))

Audit example with parameter as structure

TRANSACTI ON dol nsert User
BEG N
DO | NSERT I NTO Users (nane) val ues ($(nane));
DO SELECT id FROM Users WHERE nane = $(nane);
END
AUDI T CRITI CAL auditUserlnsert WTH
BEG N
INTO id PRINT $RESULT. i d;
I NTO nane PRI NT $(nane);
END

45

Draft

Data processing Draft

5.4.2. Functions in .NET

Introduction

You can write functions for the logic tier of Wolframe in languages based on .NET (http://
www.microsoft.com/net) like for example C# and VB.NET. Because .NET based libraries can only
be called by Wolframe as a compiled and not as an interpreted language, you have to build a .NET
assembly out of a group of function implementations before using it. There are further restrictions
on a .NET implementation. We will discuss &l of them, so that you should be able to write and
configure .NET assemblies for using in Wolframe on your own after reading this chapter.

Configuration

For enabling .NET you have to declare the loading of the module 'mod_command_dotnet' in the main
section of the server configuration file.

Modul e nod_conmand_dot net

For the configuration of the .NET assemblies to be loaded, see section 'Configure .NET Modules.

Function interface

Function context

In .NET the building blocks for functions called by Wolframe are classes and method calls. The way
of defining callable items for Wolframe is restricted either due to the current state of the Wolframe
COM/.NET interoperability implementation or due to general or version dependent restrictions
of .NET objects exposed via COM/.NET interop. We list here the restrictions:

» Themethods exported as functions for Wolframe must not be defined in anested class. They should
be defined in a top level class without namespace. This is a restriction imposed by the current
development state of Wolframe.

» The class must be derived from an interface with all methods exported declared.

e The methods must not be static because COM/.NET interop, as far as we know, cannot cope with
static method calls. Even if the methods nature is static, they have to be defined as ordinary method
cals.

Function signature

Functionscallablefrom Wolframetake an arbitrary number of argumentsasinput and return astructure
(st r uct) asoutput. The named input parameters referencing atomic elements or complex structures
areforming the input structure of the Wolframe function. A Wolframe function called with a structure
containing the elements "A" and "B" isimplemented in .NET as function taking two arguments with
the name"A" and "B". Both "A" and "B" can represent either atomic elements or arbitrary complex
structures. .NET functions that need to call global Wolframe functions, for example to perform
database transactions, need to declare a Pr ocPr ovi der interface from Wolframe namespace as
additional parameter. We will describe the Pr ocPr ovi der interface in a separate section of this
chapter.

46

http://www.microsoft.com/net
http://www.microsoft.com/net

Draft Data processing Draft

Example

The following simple example without provider context is declared without marshalling and
introspection tags. It can therefore not be called by Wl f r ane. We explain later how to make it
callable. The example just illustrates the structure of the exported object with its interface (example
CH):

usi ng System
usi ng System Runti me. | nt er opServi ces;

public struct Address

{
public string street;
public string country;
b
public interface Functionlnterface
{
Address Cet Address(string street, string country);
}
public class Functions : Functionlnterface
{
public Address Cet Address(string street, string country)
{
Address rt = new Address();
rt.street = street;
rt.country = country;
return rt;
}
}

Prepare .NET assemblies

Wolframe itself is not a .NET application. Therefore it has to call .NET functions via COM/.NET
interop interface of ahosted CLR (Common Language Runtime). To make functions writtenin .NET
callable by Wolframe, the following steps have to be performed:

Make assemblies COM visible

First the asseblies with the functions exported to Wolframe have to be build COM visible. To make
the .NET functions called from Wolframe COM visible, you have to tick "Properties/Assembly
Information” the switch "Make assembly COM visible". Furthermore every object and method that
is part of the exported API (also objects used as parameters) has to be tagged in the source as COM
visiblewith [ConVi si bl e(true)].

Tag exported objects with a Guid

Each object that is part of the exported API has to be tagged with a global unique identifier (Guid)
in order to be adressable. Modules with .NET functions will have to be globally registered and the
objects need to be identified by the Guid because that's the only way to make the record info structure
visible for Wolframe. The record info structure is needed to serialize/deserialize NET objects from
another interpreter context that is not registered for .NET. There are many ways to create a Guid and
tag an object like this: [Gui d(" 390E047F- 36FD- 4F23- 8CE8- 3A4C24B33AD3")] .

47

Draft Data processing Draft

Add marshalling tags to values

For marshalling function calls correctly, Wolframe needs tags for every parameter and member of a
sub structure of a parameter of methods exported as functions. The following table lists the supported
types and their marshalling tags:

Table5.2. Marshalling Tags

.NET Type Marshalling Tag

12 [Mar shal As(UnmanagedType. | 2)]

14 [Mar shal As(UnmanagedType. | 4)]

18 [Mar shal As(UnmanagedType. | 8)]

ul2 [Mar shal As(UnmanagedType. Ul 2)]

ul4 [Mar shal As(UnmanagedType. U 4)]

ui8 [Mar shal As(UnmanagedType. Ul 8)]

R4 [Mar shal As(UnmanagedType. R4) |

R8 [Mar shal As(UnmanagedType. R8)]

BOOL [Mar shal As(UnmanagedType. BOOL)]

string [Mar shal As(UnmanagedType. BStr)]

RECORD no tag needed

array of structures [Mar shal As(UnmanagedType. Saf eArr ay,
Saf eArraySubType = Var Enum VT_RECORD) |

array of strings [Mar shal As(UnmanagedType. Saf eArr ay,
Saf eArraySubType = Var Enum VT_BSTR)]

array of XX (XX=12,14,18,..) [Mar shal As(UnmanagedType. Saf eArr ay,
Saf eArraySubType = Var Enum VT_XX)]

Decimal floating point and numeric types (DECIMAL) are not yet supported, but will soon be
available.

Example with COM introspection tags

The following C# module definition repeats the example introduced above with the correct tagging
for COM visibility and introspection:

usi ng System
usi ng System Runtine. | nteropServi ces;

[ConVi si bl e(true)]
[Gui d(" 390E047F- 36FD- 4F23- 8CE8- 3A4C24B33AD3") |
public struct Address

{
[Mar shal As(UnmanagedType. BStr)] public string street;

[Mar shal As(UnmanagedType. BStr)] public string country;
b

[ConVi si bl e(true)]
public interface Functionlnterface

{
}

[ConVisible(true)] Address Get Address([Marshal As(UnmanagedType. BStr)] stri

48

Draft Data processing Draft

[ConVi si bl e(true)]
[A asslnterface(C asslnterfaceType. None)]
public class Functions : Functionlnterface

{
public Address Get Address([Marshal As(UnmanagedType.BStr)] string street,
{
Address rt = new Address();
rt.street = street;
rt.country = country;
return rt;
}
}

Create atype library

For making the API introspectable by Wolframe, we haveto createaTLB (TypeLibrary) filefrom the
assembly (DLL) after build. Thetypelibrary hasto be recreated every time the moduleinterface (API)
changes. Thetypelibrary is created with the programt | bexp. All created type library (.tlb) file that
will beloaded with the same runtime environment have to be copied into the same directory. They will
be referenced for introspection in the configuration. The configuration of .NET will be explained later.

Register the type library

The type library created with t | bexp has aso to be registered. For this you call the program
regtl i bv12 withyour typelibrary file (.tlb file) asargument. The type libary fegistration hasto be
repeated when the the module interface (API) changes.

Register the assembly in the GAC

Wolframe does not accept local assemblies. In order to be addressable over the type library interface
assemblies need to be put into the global assembly cache (GAC). Unfortunately this has to be
repeated every time the assembly binary changes. There is no way around. For the registration in the
GAC we have to call the program gacutil /if <assenbl ypath> with the assembly path
<assemblypath> as argument. The command gacut i | hasto be called from administrator command
line. Before calling gacut i | , assemblies have to be strongly signed. We refer here to the MSDN
documentation for how to sign an application.

Register the types in the assembly

We have to register the types declared in the assembly to enable Wolframe to create these types.
An example could be a provider function returning a structure that is called from a Wolframe .NET
function. The structure returned here has to be build in an unmanaged context. In order to be valid in
the managed context, the type has to be registered. For the registration of the typesin an assembly we
have to call the program r egasm <assemnbl ypat h> with the assembly path <assemblypath> as
argument. The command r egasmhas to be called from administrator command line.

Calling Wolframe functions

Wolframefunctionsin .NET calling globally defined Wolframe functions need to declare the processor
provider interface as an additional parameter. The processor provider interface is defined as follows
(example C#):

nanespace Wl frane

{

49

[M

Draft Data processing Draft

public interface ProcProvider

{
obj ect call(
[In] string funcnane,
[In] object argument,
[In] Guid resulttype);
}

Touseit wehavetoincludethereferenceto theassembly Wbl f r amePr ocessor Provi der . DLL.

Theinterface defined there hasamethod cal | taking 3 arguments: The name of the function to call,
the object to pass as argument and the Gui d of the object type to return. The returned object will be
created with help of the registered Gui d and can be casted to the type with this Gui d.

The following example shows the usage of a Wl frane. Pr ocProvi der call. The method
Get User Obj ect is declared as Wolframe function requiring the processor provider context as
additional argument and taking one object of type User as argument named usr . The example
function implementation redirects the call to the global Wolframe function named Get Addr ess
returning an object of type Addr ess (example C#):

public Address Get User Address(
Wbl f rame. ProcProvi der provi der,
User usr
) |
Address rt = (Address)provider.call (
" Cet Addr ess", wusr,
t ypeof (Address). GUID);
return rt;

The objects involved in this example need no more tagging because the provider context and also
structures (st r uct) need no additional mashalling tags.

Configure .NET assemblies

.NET modules are grouped together in a configuration block that specifies the configuration of the
Microsoft Common Language Runtime (CLR) used for .NET interop calls. The configuration block
hasthe header r unt i meEnv dot NET and configuresthe version of the runtime loaded (clrversion)
and the path where the typelibraries (.tIb) files can be found (typelibpath).

Withthe assenbl y definitions you declare the registered assemblies to |oad.

Runt i meEnv dot Net

{
clrversion "v4.0.30319"
typel i bpath prograns/typelibrary
assenbl y "Functions, Version=1.0.0.30, Culture=neutral, PublicKeyToken=
assenbl y "Utilities, Version=1.0.0.27, Culture=neutral, PublicKeyToken=
}

50

Draft Data processing Draft

Assembly Declaration

Table5.3. Attributes of assembly declarations

Name Description

<no identifier> The first element of the assembly definition does
not have an attribute identifier. The value is the
name of the assembly (and a so of thetypelibrary)

Version 4 dlement (Mgjor.Minor.Build.Revision) version
number of the assembly. This value is defined in
the assembly info file of the assembly project.

Culture For Wolframe applications until now aways
"neutral”. Functionality is in Wolframe not yet
culture dependent on the server side.

PublickeyToken Public key token values for signed assemblies.
See next section how to set it.
processorArchitecture Meaning not explained here. Has on ordinary

Windows .NET plattforms usually the value
"MSIL". Read the MSDN documentation to dig

deeper.

Get the PublicKeyToken

We already found out that Wolframe .NET modules have to be strongly signed. Each strongly signed
assembly has such a public key token that has to be used as attribute when referencing the assembly.

Wecan getthePubl i cKeyToken of theassembly by callingsn - T <assenbl ypat h>fromthe
command line (cmd) with <assemblypath> as the path of the assembly. The printed value isthe public
key to insert as attribute value of Publ i cKeyToken in the Wolframe configuration for each .NET
assembly.

Validation issues

Languages of .NET called viathe CLR are strongly typed languages. This means that the input of a
function and the output is already validated to be of a strictly defined structure. So a validation by
passing the input through aform might not be needed anymore. Validation with .NET data structures
is wesker than for example XML validation with forms defined in a schema language. But only if
distinguishing XML attributes from content elements is an issue. See in the documentation of the
standard command handler how validation can be skipped with the attribute SKI P.

5.4.3. Functions in python

Current development status

Y ou can write functions for the logic tier of Wolframe in the Python programming language (http://
www.python.org).

The implementation of Python callsis not yet available. But Wolframe will provide Python functions
soon.

5.4.4. Functions in Lua

Introduction

Y ou can write functionsfor thelogic tier of Wolframewith Lua. Luaisascripting language designed,
implemented, and maintained at PUC-Rio in Brazil by Roberto lerusalimschy, Waldemar Celes

51

http://www.python.org
http://www.python.org

Draft Data processing Draft

and Luiz Henrique de Figueiredo (see http://www.lua.org/authors.html). A description of Luais not
provided here. For an introduction into programming with Lua see http://www.lua.org. The official
manual which is also available as book is very good. Wolframe introduces some Lua interfaces to
access input and output and to execute functions.

Configuration

For enabling Lua you have to declare the loading of the module 'mod_command_lua in the main
section of the server configuration file.

Modul e nod_conmand_| ua

Each Lua script referenced has to be declared in the Pr ocessor section of the configuration with
pr ogram <sour cef i | e>. Thescriptisrecognized as Luascript by thefile extension ".lua". Files
without this extension cannot be loaded as Lua scripts.

Declaring functions
For Lua we do not have to declare anything in addition to the Lua script. If you configure a Lua

script as program, all global functions declared in this script are declared as global form functions. For
avoiding name conflicts you should declare private functions of the script as| ocal .

Wolframe provider library

Wolframe lets you access objects of the global context through a library called pr ovi der offering
the following functions:

Table5.4. Method

Name Parameter Returns

form Name of the form An instance of the form

type Typenameand initializer list | A constructor function to create
avalue instance of thistype

formfunction Name of the function Form function defined in a
Wolframe program or module

document Content string of the document|Returns an object of type

to process "document” that allows the

processing of the contents
passed as argument. See
description of type "document"

authorize 1) authorization function 2)|Callsthe specified authorization
(optional) authorization resource|function and returns true on
success (authorized) and falseon
failure (authorization denied or
error)

Using atomic data types

Wolframe lets us extend the type system consisting of Lua basic data types with our own. We can
create atomic data types defined in amodule or in a DDL datatype definition program (.wnmp fil€).
For thisyou call thet ype method of the provider with the type name as first argument plus the type
initializer argument list as additional parameters. The function returns a constructor function that can

52

http://www.lua.org/authors.html
http://www.lua.org

Draft Data processing Draft

be called with the initialization value as argument to get a value instance of this type. The name of
the type can refer to one of the following:

Table5.5. List of Atomic Data Types

Class Initializer Arguments Description

Custom datatype |Custom Type Parameters A custom datatype defined in amodule

with arithmetic operators and methods

Normalization Dimension parameters A type defined as normalization
function function in amodule

DDL datatype (no arguments) A normalizer defined as sequence of
normalization functions in a .wnmp
sourcefile

Data type|(no arguments) Arbitrary precision number type

‘bignumber’

Data fype|(no arguments) Data type representing date and time

'datetime’ down to agranularity of microseconds

Data type 'datetime’

The datatype 'datetime’ is used as interface for date time values.

Table5.6. Methods of 'datetime’

Method Name Arguments Description
<constructor> year, month, day, hour,|Creates a date and time value
minute, second ,millisecond,|with a granularity down to
microsecond microseconds
<constructor> year, month, day, hour, minute, | Creates a date and time value
second ,millisecond with a granularity down to
milliseconds
<constructor> year, month, day, hour, minute, | Creates a date and time value
second
<constructor> year, month, day Creates adate value
year (no arguments) Return the value of the year
month (no arguments) Return the value of the month
(1..12)
day (no arguments) Return the value of theday inthe
month (1..31)
hour (no arguments) Return the value of the hour in
the day (0..23)
minute (no arguments) Return the value of the minute
(0..59)
second (no arguments) Return the value of the second
(0..63 : 59 + leap seconds)
millisecond (no arguments) Return the value of the
millisecond (0..1023)
microsecond (no arguments) Return the vaue of the
microsecond (0..1023)
__tostring (no arguments) Return the date as sdtring
in the format YYYYMMDD,

53

Draft

Data processing

Draft

Method Name

Arguments

Description

YYYYMMDDhhmmss,
YYYYMMDDhhmmssl| or
YYYYMMDDhhmmsslicc,
depending on constructor used to
create the date and time value.

Data Type 'bignumber’

The data type 'bignumber' is used to reference fixed point BCD numbers with a precision of 32767
digits between -1E32767 and +1E32767.

Table5.7. Methods of 'datetime’

M ethod name

Arguments

Description

<constructor>

number value as string

Creates a bignumber from its
string representation

<constructor>

number value

Creates a bignumber from a lua
number value (double precision
floating point number)

precision

(no arguments)

Return the number of significant
digitsin the number

scae

(no arguments)

Return the number of fractional
digits (may be negative, may be
bigger than precision)

digits

(no arguments)

Return the significant digits in
the number

tonumber

(no arguments)

Return the number asluanumber
value (double precision floating
point number) with possible lost
of accurancy

__tostring

(no arguments)

Return the big number value as
string (not normalized).

Filter interface iterators

Lua provides an interface to the iterators internally used to couple objects and functions. They are
accessible asiterator function closurein Lua. The look similar to Luaiterators but are not. Y ou should
not mix them with the standard L ua iterators though the semantic is similar. Filter interface iterators
do not return nodes of the tree as subtree objects but only the node data in the order of a pre-order
traversal. Y ou can recursively iterate on the tree and build the object during traversal if you want. The
returned elements of the Filter interface iterators are tuples with the following meaning:

Table5.8. Filter interfaceiterator elements

TupleFirst Element

Tuple Second Element

Description

NIL/false

string/number

Open (tag is second element)

NIL/fase

NIL/fase

Close

Any non NIL/false

string/number

Attribute assignment (value is
firgt, tag is second element)

string/number

NIL/false

Content value (value is first
element)

Draft

Data processing Draft

Iterator library

Global

Wolframe lets you access filter interface iterators through a library called i t er at or offering the
following functions:

Table5.9. Method

Name Parameter Returns

scope serialization iterator (*) An iterator restricted on the
subnodes of the last visited node
**)

(*) See section "serialization iterator”

(**) If iterator.scopeiscalled, all elements of the returned iterator hasto be visited in order to continue
iteration with the origin iterator on which iterator.scope was called.

objects

Besides the provider library Wolframe defines the following objects global in the script execution
context:

Name Description
logger object with methods for logging or debugging

Using forms

Theprovider functionpr ovi der . f or m() withthe name of theform as string as parameter returns
an empty instance of a form. It takes the name of the form as string argument. If you for example
have a form configured called "employee" and you want to create an employee object from a Lua
table, you call

bcf = provider.forn("enpl oyee")
bef:fill({surname='Hans', nanme='Mister', conpany="Wlfrane'})

Thefirst line creates the data form object. The second line fills the data into the data form object.

The form method fi | | takes a second optional parameter. Passing "strict" as second parameter
enforces a strict validation of the input against the form, meaning that attributes are checked to be
attributes (when using XML seriaization) and non optional elements are checked to be initialized.
Passing "complete" as second parameter forces non optional elements to be checked for initialization
but does not distinguish between attributes and content values. "relaxed" isthe default and checks only
the existence of filled-in valuesin the form.

Given the following validation form in simple form DDL syntax (see chapter "Forms"):

FORM Enpl oyee
-root enpl oyee

{
ID!@nt ; Internal custoner id (nandatory)
nane !string ; Nanme of the custoner (nandatory)
conpany string ; Conpany he is working for (optional)

55

Draft Data processing Draft

thecall of fi | | inthefollowing piece of code will raise an error because some elements of the form
('ID" and 'name’) are missing in the input:

bc = provider.form("enployee"):fill({conmpany="Wlframe'}, "strict")

To access the datain a form there are two form methods available. get () returns afilter interface
iterator on the form data. There is aso a method val ue() that returns the form data as Lua data
structure (a Luatable or atomic value).

Form functions

For calling transactions or built-in functions loaded as modules the Lua layer defines the concept
of functions. The provider function pr ovi der . f or nf unct i on with the name of the function as
argument returns a Lua function. This function takes a table or afilter interface iterator as argument
and returns a data form structure. The data in the returned form data structure can be accessed with
get () that returns afilter interface iterator on the content and val ue() that returns a Lua table
or atomic value,

If you for example have a transaction called "insertEmployee” defined in a transaction description
program file declared in the configuration called "insertEmployee” and you want to call it with the
‘employee’ object defined above as input, you do

f = provider.fornfunction("insertEnpl oyee")

res = f ({surname='Hans', nanme='Mister', conpany="Wlfrane'})
t = res:val ue()

output:print(t["id"])

The first line creates the function called "insertEmployee" as Lua function. The second calls the
transaction, the third creates a Lua table out of the result and the fourth selects and prints the "id"
element in the table.

List of Lua objects

Thisisalist of al objects and functions declared by Wolframe:

Table 5.10. Data forms declared by DDL

Method Name Arguments Returns Description
get filter interface iterator|Returnsafilter interface
*) iterator on the form
elements
value Luatable Returns the contents of

the data form as Lua
table or atomic value

__tostring string String representation of
form for debugging

56

Draft Data processing Draft
Method Name Arguments Returns Description
name string Returnsthe global name
of the form.
fill Lua table or filter|the filled form (for|Validatesinput and fills
interface iterator (*),|concatenation) the input data into the
optional validation form.
mode (**)

(*) See section "filter interface iterator"

(**) "strict" (full validation), "complete" (only check for all non optional elements initialization) or
"relaxed" (no validation except matching of input to elements)

Table5.11. Data formsreturned by functions

Method Name Returns Description

get filter interface iterator (*) Returns afilter interface iterator
on the form elements

value Luatable or atomic value Returns the contents of the data
form as Lua table or atomic
value

__tostring string String representation of form for

debugging

(*) See section "filter interface iterator"

Table5.12. Document

Method Name

Arguments

Description

docformat

Returns the format of the
document {'XML','JSON',etc..}

filter and/or document type table

Attaches afilter to the document
to be used for processing

doctype

Returns the document type of
the content. For retrieving the
document type you have first to
define afilter.

metadata

Returns the meta data structure
of the content. For retrieving the
document meta data you have
first to define afilter.

value

Returns the contents of the
document as Luatable or atomic
value. The method ‘table’ does
the same but is considered to be
deprecated.

table

Deprecated. Does return the
same as the method 'value

form

Returns the contents of the
document asfilled form instace

get

Returns afilter interface iterator
(*) on the form elements

(*) See section "filter interface iterator"

57

Draft Data processing Draft

Table5.13. Logger functions

Method Name Arguments Description
logger.printc arbitrary list of arguments Print arguments to standard
consol e output
logger.print loglevel (string) plus arbitrary|log argument list with defined
list of arguments log level

Table5.14. Global functions

Function Name Arguments Description

provider.form name of form (string) Returns an empty data form
object of the given type

provider.formfunction name of function (string) Returnsaluafunction to execute
the Wolframe function specified
by name

provider.type name of data type (string) Returns a constructor function

for the data type given by
name. The name specifies either
a custom data type or a
normalization function as used
in forms or one of the additional
userdata types ‘datetime’ or

'bignumber'.
provider.document Content string of the document|Returns an object of type
to process "document” that alows the

processing of the contents
passed as argument. See
description of type "document"

(*) See section "filter interface iterator "
(**) The filter interface iterator of a defined scope must be consumed completely before consuming

anything of the parent iterator. Otherwise it may lead to unexpected results because they share some
part of the iterator state.

5.4.5. Functions in native C++

Introduction

Y ou can write functions for the logic tier of Wolframe with C++. Because native C++ is by nature
a compiled and not an interpreted language, you have to build a module out of your function
implementation.

Prerequisites

For native C++ you need a C++ build system with compiler and linker or an integrated development
environment for C++.

Declaring functions

Form functions declared in C++ have two arguments. The output structuretofill is passed by reference
as first and the input structure passed is by value. The input structure copy should not be modified
by the callee. This means in C++ that it is passed as const reference. The function returns an i nt

that is O on success and any other value indicating an error code. The function may also throw a

58

Draft Data processing Draft

runtime error exception in case of an error. The following example shows afunction declaration. The
function declaration is not compl ete because the input output structures need to be declared with some
additional attributes needed for introspection. We will explain this in the following section.

Example Function Declaration

The function takes a structure as input and writes the result into an output structure. In this example
input and output type are the same, but thisis not required. It's just the same here for simplicity.

The elements of the function declaration are put into a structure with four elements. The t ypedef
for the InputType and OutputType structuresis required, because the input and output types should be
recogniceabl e without complicated type introspection templates. (Templ ate based introspection might
cause spurious and hard to understand error messages when building the module).

Thefunction name returnsthe name of the function that identifiesthe function in the Wolframe global
scope.

Theexec function declared as static function with thissignaturerefersto the function implementation.

/1 ... PUT THE | NCLUDES FOR THE "Custoner" STRUCTURE DECLARATI ON HERE !

struct ProcessCust omer

{

t ypedef Customer | nput Type;

typedef Customer CQutput Type;

static const char* nanme() {return "process_custoner”;}

static int exec(const proc::ProcessorProvider* provider, |nputType& res, c
b

Input/output data structures

For defining input and output parameter structures in C++ you have to define the
structure and its seriadlization description. The seridization description is a static function
get Struct Descri pti on without arguments returning a const structure that describes what
element names to bind to which structure elements.

The following example shows a form function parameter structure defined in C++.

Header file

Declares the structure and the seriaization description of the structure. Structures may contain
structures with their own serialization description.

#include "serializel/struct/structDescriptionBase. hpp"
#i ncl ude <string>

nanespace Wl franme {
nanespace exanple {

struct Custoner

{

int ID /1 Internal custoner id

59

Draft Data processing Draft
std::string nane; /1 Nanme of the customer
std::string canonical _Nane; /1 Custoner name in canonical form
std::string country; /1 Country
std::string locality; /1 Locality
static const serialize::StructDescriptionBase* getStructDescription();
b
}}// nanespace
Source file

Declares'ID' as attribute and name, canonical_Name, country, locality astags. The'--' operator marks
the end of attributes section and the start of content section.

#include "serialize/struct/structDescription.hpp"
usi ng namespace _Wl frane;

nanmespace {
struct CustonerDescription :public serialize::StructDescription<Customner>

{
Cust oner Descri ption()

{
(*this)
("1D', &Custoner::I1D)
("name", &Custoner::nane)
("canoni cal _Name", &Custoner:: canoni cal _Nane)
("country", &Customer::country)
("locality", &Custoner::locality)
}

s

const serialize::StructDescriptionBase* Custoner::getStructDescription()

{

static CustonerDescription rt;
return &rt;

Writing the module

Now we haveall piecestogether to build aloadabl e Wolframe modul e with our example C++ function.
The following example shows what you have to declare in the main module source file.

Module declaration

The module declaration needs to include appdevel . hpp and of course al headers
with the function and data structure declarations needed. The module starts with the
header macro CPP_APPLICATION_FORM_FUNCTION_MODULE with a short description

60

Draft Data processing Draft

of the module. What follows are the function declarations declared with the macro
CPP_APPLICATION_FORM_FUNCTION. This macro has the following arguments in this order:

Name Description

NAME identifier of the function

FUNCTION implementation of the function

OUTPUT output structure of the function

INPUT input structure of the function

The declaration list is closed with the parameterless footer macro

CPP_APPLICATION_FORM_FUNCTION_MODULE_END. The following example shows an
example modul e declaration:;

#i ncl ude "appDevel . hpp"
/1 ... PUT THE | NCLUDES FOR THE "ProcessCust onmer"” FUNCTI ON DECLARATI ON HERE !

#i ncl ude "custonerskFuncti on. hpp"
usi ng namespace Wl frane;

WF_MODULE _BEG N(" ProcessCust onmer Function", "process custoner function")
WF_FORM FUNCTI ON(" process_cust oner", ProcessCust oner: : exec, Cust oner, Cust orer)
WF_MODULE_END

Building the module

For building the module we have to include all modules introduced here and to link at against the
wolframe serialization library (wolframe_serialize) and the wolframe core library (wolframe).

Using the module

The module built can be loaded as the other modules by declaring it in the wolframe LoadModules
section of the configuration. Simply list it there with modul e <your Modul eNane> with
<yourModuleName> being the name or path to your module.

Validation issues

C++ isastrongly typed language. This means that the input of a function and the output is aready
validated to be of a strictly defined structure. So a validation by passing the input through a form
might not be needed anymore. The constructs used to describe structures of Wolframe in native C+
+ are even capable of describing attributes like used in XML (section 'Input/Output Data Structures
above). See in the documentation of the standard command handler how validation can be skipped
with the attribute SKI P.

5.5. Forms

Forms are data structures used to validate input and output data and to do some basic normalization
in order to make data accessible in a uniform way. Forms are defined in a data definition language
(DDL) and translated by a compiler at startup. Those compilers are defined as |oadable modules.

This chapter describes how form data schemas are linked to the logic tier. It introduces a data
description language (DDL) called si npl ef or mthat allows you to specify data schemas with the
validation and normalization of atomic types. It also describes the Wolframe modul e concept for form
descriptions that allows you to add a compiler for your existing data schemas.

61

Draft

Data processing Draft

5.5.1.

After reading this chapter you should be able to write data forms of Wolframe of the logic tier in
the si npl ef or mdata description language on your own. Y ou should also know how a new data
description language (DDL) could be added.

Be aware that you have to configure a data description language type (DDL compiler) of thelogic tier

in Wolframe before using it. Each chapter introducing a data form description language will have a
section that describes how the server configuration of Wolframe hasto be extended for its availability.

Form data definition languages

Introduction

Forms

Form data structures can be defined in aDDL (Data Definition Language). It depends very much on
the application what DDL is best to use. Users may already have their data definitions defined in a
certainway. Theform DDL can be defined in theway you want. Wolframe offers a plugin mechanism
for DDL compilers and provides examples of such compilers. Y ou configure the DDL sourcesto load
and the compiler to use.

With the DDL form description we get a deserialization of some content into a structure and a
seriaization for the output. We get also a validation and normalization procedure of the content
by assigning types to atomic form elements that validate and normalize the data elements. Most of
the business transactions should be doable as input form description, output form description and a
transaction that maps input to output without control flow aware programming.

All types of dataformsintroduced here are equivalent in use for all programs.
in simpleform DDL

As example of aform DDL we provide the simpleform DDL. In simple form we forms, subtructures
for reuse inside structures and forms and includes that help you to organize your code.

Commands

The simpleform language has 3 commands:

FORM Declare the name of the form, some document
meta data and the structure that represents the
description of the document content of thisform

STRUCT Declare the name of the structure, the structure
that can be referenced by name in structures of
subsequent FORM or STRUCT declarations

| NCLUDE include thefile given as argument

Structures

Structuresin FORMor STRUCT declarations are defined aslist of elementsin curly brackets'{" '}".

The following example shows an empty structure declaration

STRUCT nyStructure

{
}

The following example shows an empty form declaration

FORM nyDocunent Schenma

62

Draft Data processing Draft

Elements of structures

An element in thelist is either adeclaration of a substructure or an atomic element. The elements are
separated by comma',' or end of line.

The following example shows a structure that is a list with 3 elements separated by end of line

{
nunber int
nane string
idint

}

And the same example with a comma as element separator

nunber int, name string, id int

An element starts with an identifier, the name of the element. The name is followed by some
special characters defining the element attributes and the element type. The element attributes will be
described later. The element typeis either an embedded substructurein '{' '}' brackets or an identifier
naming an atomic type or a substructure declared previously as a STRUCT.

Embedded structure definitions

Here is an example with a embedded substructure

{
nurmber i nt
nane string
address {
street string, country string
}
}

Embedded substructure declarations follow recursively the same rules as structures defined here.
Default atomic value assignments
Named types referencing atomic types can be followed by an assignment operator ‘=" and a string that

declared adefault valueinitialization of the structure element. Here is an example with adefault value
assignment

nunber int =1
nane string

63

Draft

Data processing

Draft

Types of atomic values

Theatomic element type names are either thereserved keyword st r i ng or atype defined as sequence
of normalizer functions in a normalize definition file. The normalizer functions assigned to a type
validate the value and transform it to its normalized form. The next section will explain how data
types are defined.

Element attributes

The element attributes are marked with some special characters listed and explained in the following

table:

Table 5.15. Element attributesin smpleform

L ocation Example Description
@ |prefix of datatype id @nt Expresses that the element is an attribute and
not a content element of the structure. This
has only influence on the XML or similar
representation of the form content
? |prefix of datatype val ue ?string |Expressesthat the element is optional aso in

strict validation

prefix of form name

ltree ~bintree

Expresses that the element is optional and
refersto astructure defined in the same module
that is expanded only if the element is present.
With this construct it is possible to define
recursive structures like trees.

prefix of datatype

id!int

Expresses that the element is aways
mandatory (also in non strict validation)

(]

suffix of datatype

val ues string[]

Expresses that the element is an array of this
type

[1 |without datatype ar [1 { } Expressesthis element isan array of structures
and that the structure defined describes the
prototype (initialization) element of the array.

=" |lend of data typelid int =1 Expresses that '.." is the default initialization

declaration value of this element.

Non contradicting attributes can be combined:

id ?2@nt =1

Embedding elements and inheritance

Using a single underscore' ' as atomic element name means that the atomic element is representing
the unnamed content value of the structure. Using a single underscore for a substructure means that
the substructure is embedded into the structure without being referenceable by name. The embedding
into a structure is used to express inheritance.

Hereis an example with embedding of a named structure

STRUCT cont ent

{

nane string
birth string

Draft Data processing Draft

}
FORM i nsert edCont ent
{
idint
__content
}

Declaring document meta data

Document meta data in FORM definitions are declared after the form declaration header and before
the form structure declaration. A meta data declaration starts with adash '-' followed by the meta data
attribute name as identifier or string and the value as string.

Here is an example of aform with meta data declarations

FORM nyDoc

-root = 'doc', -schenaLocation = 'http://bla.con schema'
{
}

or with end of line as attribute separator

FORM nyDoc

-root = 'doc'

-schemaLocation = 'http://bl a.com schenn'
{
}

Example form definition

Now all elements of simpleform are explained. Here is an example that shows a complete form
definition in smpleform DDL.

FORM Cust omrer
-root custoner

{
ID!@nt ; Internal custoner id (nandatory)
nane string ; Nanme of the custoner
canoni cal _Nane string ; Custonmer nane in canonical form
country string ; Country
locality ?string ; Locality (optional)

}

5.5.2. Datatypes in DDLs

Introduction

The basic elements to build atomic data types in Wolframe are normalization functions. Basic
normalization functions are written in C++ and |oadabl e as modul es.

65

Draft Data processing Draft

Aswe aready mentioned are atomic elementsin forms typed. With each type afunction is associated
to validate and normalize the atomic element of that type. There is only one predefined type called
'string'. strings are neither validated nor transformed for processing in any way. The others are defined
in fileswith the extension . wnnp that are referenced as programs in the configuration.

A . wnnp file contains assignments of atype name to sequences of basic normalization function calls
wherethefirst takestheinitial input. A normalization function call can either be anormalizer function
or a custom data type defined in a module or a method of the predecessing custom data type in the
sequence of the normalization function calls. The output of afunction in the sequence getsthe input of
the next one and the final output for thelast one. Each normalization step validates the input as atomic
type (arithmetic,string,etc.) and transforms it to another atomic type.

Example

The example defines 3 numeric types including trimming of the input string for mode tolerant parsing
and a string type that is converted to lowercase as normalization.

int=triminteger(5);

ui nt =t ri m unsi gned,;
currency=trimfixedpoint(13, 2);
name=tri m| cnaneg;

Language description

Type assignments

Each type declaration in a. wnnp file starts with an identifier followed by an assignment operator
'=". The left side identifier specifies the name of the type. This type name can be used in a DDL as
name instead of the built-in type st ri ng. A token of thistype is validated and normalized with the
comma separated sequence of normalizer references on theright side of the assignment. A normalizer
reference consists of an identifier plus an optional comma separated list of constant arguments in
brackets ('(" and ")"). The interpretation of the arguments depend on the function type. An integer type
for example could have the maximum number of digits of the integer type.

Standard modules for normalizers

There are some standard modules you can use when you define your own type system. They are
delivered with Wolframe:

» mod_normalize_locale: Unicode string composite normalization

» mod_normalize_string: Basic string normalization (like trim, etc.)

» mod_normalize_base64: Base64 encoding/decoding

» mod_datatype datetime: Custom data type for date and time arithmetics and normalization

» mod_datatype bcdnumber: Custom data type for bid number arithmetics and normalization
Configuration
For declaring and using a .wnmp file in our example above, we have to load the module

'mod_normalize_string' and the module 'mod_normalize_number'. For this we add the following two
lines to the L oadM odul es section of our Wolframe configuration:

66

Draft

Data processing Draft

Modul e nod_normal i ze_nunber
Modul e nod_nornmal i ze_string

We also have to add the declaration of the program "example.wnmp" (listing example above) to the
Processor section of the configuration.

Pr ogr am exanpl e. wnnp

5.6. Filters

Filters describe the transformation of serialized data to a unified element sequence of hierarchical
structured data and to document meta data and back. The application does not care about data
formats as long as there exists afilter providing the unified form of data. This unified data format is
represented asiterator visiting the nodes of the document tree and plus a contract to level out language
differences. Additioally each document type has some metadata defined. A filter interprets all meta
datait understands (his) and uses them for output.

This chapter describes how filters for different data formats are linked to the logic tier. For each data
format supported by Wolframe one or more filter type is introduced.

After reading this chapter you should be able to handle different document formats and encodings in
thelogic tier of Wolframe. Y ou will know how to add programs for scriptable filters like XSLT.

Be aware that you have to configure a data filter of the logic tier in Wolframe before using it. Each
chapter introducing a filter type will have a section that describes how the server configuration of
Wolframe hasto be extended for its availability.

5.6.1. XML Filter

Introduction

You can use XML for datafiltersin the logic tier of Wolframe. There are the following variants of
XML filters available:

¢ libxml2 (http://www.xmlsoft.org) or

* textwolf (http://www.textwolf.net)

Character set encodings

Thelibxml2 and the textwolf filter support at |east the following character set encodings. For character
set encodings that are not in the list, please ask the Wolframe team.

e UTF-8or

UTF-16LE or

UTF-16 (UTF-16BE) or

UTF-32LE (UCS-4LE) but only with textwolf or

UTF-32 (UTF-32BE or UCS-4BE) or

67

http://www.xmlsoft.org
http://www.textwolf.net

Draft Data processing Draft

» 1S0O 8859 (code pages '1' to'9")
Configuration

For using an XML filter based libxml2, you haveto load themodulesnod_filter |i bxm 2 and
nod_doct ype_xnl . For thisyou add thetwo following linesto the LoadMbdul es section of your
Wolframe configuration:

Modul e nod_doct ype_xm
Modul e nmod_filter |ibxm2

For using an XML filter based textwolf, you have to load the modulesnod _filter textwol f
and nod_doct ype_xm . For this you add the following two lines to the LoadModul es section
of your Wolframe configuration:

Modul e nod_doct ype_xm
Modul e nod_filter textwolf

5.6.2. JSON filter

Introduction

Y ou can use JSON for datafiltersin thelogic tier of Wolframe. The standard JSON filter of Wolframe
is called cjson and based on the library cJSON (http://sourceforge.net/projects/cjson) from Dave
Gamble.

Character set encodings

Without explicitly specified, the cjson filter support the following character set encodings. For
character set encodings that are not in the list, please ask the Wolframe team.

e UTF-8or

* UTF-16LE or

UTF-16 (UTF-16BE) or

UTF-32LE (UCS-4LE) or

UTF-32 (UTF-32BE or UCS-4BE) or
Configuration

For using the JSON filter based cJSON, you have to load the module 'mod_filter_cjson'. For thisyou
add the following line to the LoadM odul es section of your Wolframe configuration:

Modul e nod_doctype_j son
Modul e nod_filter_cjson

68

http://sourceforge.net/projects/cjson

Draft Data processing Draft

5.6.3. XSLT Filter

Introduction

You can use XSLT for datafiltersin the logic tier of Wolframe. The XSLT filter of Wolframe for is
based on libxml2 (http://www.xmlsoft.org).

Character set encodings

Without explicitly specified, the XSLT filter support the following character set encodings. For
character set encodings that are not in the list, please ask the Wolframe team.

e UTF-8or

UTF-16LE or

UTF-16 (UTF-16BE) or

UTF-32LE (UCS-4LE) or

UTF-32 (UTF-32BE or UCS-4BE) or

Configuration
For using an XSLT filter based libxml2, you haveto load the modulesmod_filter |i bxm 2 and

nod_doct ype_xni . For this you add the following 2 lines to the LoadModules section of your
Wolframe configuration:

Modul e nod_doct ype_xm
Modul e nod filter |ibxm 2

Y ou also have to add the program of the XSLT filter into the Processor section of the configuration.
The name of the filter is the filename of the XSLT filter program without path and extension. In our
exampl e the filter would be named invoice | SOxxxx:

Program i nvoi ce_| SOxxxx. xsl t

5.7. Testing and defect handling

In this chapter we learn how parts of a Wolframe application can be verified to work correctly. The
basis for testing and debugging a Wolframe application is the command line tool wolfilter.

5.7.1. Using wolfilter

The command line program waolfilter allows you to call any Wolframe function or filter or mapping
into a form structure on command line. The program is mapping stdin or if specified the contents of
afileto stdout.

69

http://www.xmlsoft.org

Draft Data processing Draft

The option '--config' (or '-c') specifies the configuration to use, the only argument of the wolfilter
program specifies the function to call or form to fill. If a dash '-' is specified as command then no
command is called. The input is just mapped through the filters specified. In case of aform or filter
mapping, no configuration has to be specified.

The following examples assume the input file name to be in.xml or in.json and the output file to be
named out.xml or out.json respectively.

Test configuration

For the examples needing a configuration, we prepare the following simple configuration, just
declaring the processing stuff, we need. Of course wolfilter can also work with any wolframe server
configuration. The configuration will be referenced as 'test.conf'.

LoadModul es

{
nmodul e nod_conmand_| ua
nodul e nod_doct ype_xm
nmodul e nod_filter _|ibxm 2
nmodul e nod_filter_json
nmodul e nod_filter_token

}

Processor

{
programtest.|ua
program nyfilter.xslt
program nmyform sfrm

}

Testing a filter

The following example shows the mapping through a libxml2 filter. Filters are tested by passing a
dash '-' command to execute. Because we do not need to load programs, we can call wolfilter without
atest configuration.

cat in.xm | wolfilter -e libxm2 -mnod_filter_libxm2 - > out.xm

Thefollowing example showsthe processing of theinput through an xdlt filter and mapping the output
through atoken filter that showsthe tokenization of theinput by theinput filter. Becausethereferenced
XSLT filter is defined as source in a program, we have to specify a configuration (test.conf) that
declares the programs to |oad.

cat in.xm | wolfilter -i myfilter -o token -c test.conf - > out.xm

Testing a Form

The following example shows the mapping through a form defined with ssmpleform DDL. Mapping
through forms s tested by passing the name of the form as command to execute. Because forms have
to be loaded as programs, we have to specify a configuration (test.conf) too.

70

Draft Data processing Draft

cat in.xm | wolfilter -e libxm2 -c test.conf MyForm > out. xm

we assume here that the form to use is defined in myform.sfrm that is declared as program in the
configuration and that the form is called MyForm.

Testing a Function

The following example shows the execution of a function written in Lua. A JSON filter is used for
input and output.

cat in.xm | wolfilter -e cjson -c test.conf MyFunc > out.json

we assume here that the exported function to call defined in myfunc.lua declared in test.conf and is
called MyFunc.

71

Draft

Draft

Glossary

Thisisthe glossary for the Wolframe Application Building Manual. Although it covers most of the termsused in
the Wolframe world, someterms might be skipped if they arerarely used in thiscontext. Thesetermsare explained
in the Application Building Manual.

External glossary

Data Definition Language

A domain specific language for describing data structures

Wolframe glossary

Connection Handler

Command Handler

Program

Transaction

Lua

Filter

Form

Channel

Group

Unit

Provider

End Of Data (EoD)

Interface for the networking to one client/server connection during its whole
lifetime.

Interface for delegating processing of client protocol commands in a
hierarchical way. A command handler is created by a connection handler or
another command handler. During command execution the input/output of the
connection is entirely handled by the command handler. Command Handlers
are used to build the communication protocol processing as hierarchical state
machine.

A set of named units of description of processing or datain a sourcefile. The
sourcefileisloaded at server startup.

A transaction is a call of a database defined in a transaction program. A
transaction either fails completely or succeeds as whole. Auditing is seen as
part of the transaction. Transactions have an object as input and return an
object or an error as result. Authorization tags that are checked against the
user privileges of the connection can be attached to transactions.

Lua (www.lua.org) is a scripting language. It is used in Wolframe as one
language for writing programs. L uaintegrates nice into a cooperative system
with asingle threaded execution model as Wolframeis.

Filtersareattached to network input and output to read and writeinput in awell
defined format. Filters let you process input and print output in an iterative
way. Filters are loaded by the system at startup and have a unique name.

A form is a hierarchical description of typed data. Forms are used to create
objects from a seridization and to validate input. Forms are defined in
programswrittenin aDDL (Data Definition Language) or as declared as part
of abuild-in function API.

The flow for a single connection. Not all objects have channels (e.g.
databases).

A set of objects of the same type seen as one single object for the objects that
useit.

An element of agroup. A group isaset of units.

An entity providing objects of a kind. Some providers are factories, but not
all of them.

Marks the end of a complete data unit to be processed by a processor. End of
dataismarked with CR LF dot (".") CR LF or LF dot LF. For passing lineswith

72

Draft

Glossary Draft

Application Reference Path

A

AAAA
Authentication

Authorization

Accounting

Auditing

SSL

TLS

adot (.") at the start of a content line, the client hasto escape an LF dot in the
content with LF dot dot. This escaping appliesalso to the result returned to the
client. So client hasto unescape LF dot sequences by replacing them by aLF.

The application server defines this file path where al relative paths defined
in the configuration refer to.

Acronym for Authentication, Authorization, Accounting and Auditing
See Also Authentication, Authorization, Accounting, Auditing.

Authentication is a process that creates a login for the user, granting him
access to parts of the system.

Authorization grant or deny the execution of functions or database
transactions based on rules on the client login of the session (Authentication).
Y ou can specify such access rules on different levels of processing.

Auditing describes a special kind of logging of transactions. Audit operations
are represented as function calls. Audit operations specified as critical are
handled as a critical part of the transaction. If a critical audit operation fails
then the transaction fails (rollback).

Secure Sockets Layer

Cryptographic protocols which provide secure communications on the
Internet. SSL is a predecessor to TLS
See Also TLS.

Transport Layer Security

Transport Layer Security (TLS) and its predecessor, Secure Sockets Layer
(SSL), are cryptographic protocol s that provide communication security over
the Internet. TLS and SSL encrypt the segments of network connections
abovethe Transport Layer, using asymmetric cryptography for key exchange,
symmetric encryption for privacy, and message authentication codes for
message integrity.

See Also SSL.

73

Draft Draft

Index

74

Draft

Draft

Appendix A. GNU General Public
License version 3

Version 3, 29 June 2007
Copyright © 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing
itisnot alowed.

Preamble

The GNU General Public Licenseisafree, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed to take away your freedom to
share and change the works. By contrast, the GNU General Public License is intended to guarantee
your freedom to share and change all versions of a program—to make sure it remains free software
for al its users. We, the Free Software Foundation, use the GNU Genera Public License for most
of our software; it applies also to any other work released this way by its authors. Y ou can apply it
to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses
are designed to make sure that you have the freedom to distribute copies of free software (and charge
for them if you wish), that you receive source code or can get it if you want it, that you can change
the software or use pieces of it in new free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you
to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of the
software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for afee, you must pass on
to the recipients the same freedoms that you received. Y ou must make sure that they, too, receive or
can get the source code. And you must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the
software, and (2) offer you this License giving you legal permission to copy, distribute and/or modify
it.

For the developers' and authors' protection, the GPL clearly explainsthat thereisno warranty for this
free software. For both users' and authors' sake, the GPL requires that modified versions be marked
as changed, so that their problems will not be attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the software
inside them, although the manufacturer can do so. Thisisfundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic pattern of such abuse occursin the
area of products for individuals to use, which is precisely where it is most unacceptable. Therefore,
we have designed this version of the GPL to prohibit the practice for those products. If such problems
arise substantially in other domains, we stand ready to extend this provision to those domainsin future
versions of the GPL, as needed to protect the freedom of users.

Finally, every program isthreatened constantly by software patents. States should not allow patentsto
restrict development and use of software on general-purpose computers, but in those that do, we wish
to avoid the specia danger that patents applied to afree program could make it effectively proprietary.
To prevent this, the GPL assures that patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

75

http://fsf.org/

Draft

GNU General Public Draft
License version 3

TERMS AND CONDITIONS

0. Definitions.

“ThisLicense” refersto version 3 of the GNU General Public License.

“Copyright” also means copyright-like lawsthat apply to other kinds of works, such as semiconductor
masks.

“The Program” refers to any copyrightable work licensed under this License. Each licensee is
addressed as “you”. “Licensees’ and “recipients’ may be individuals or organizations.

To"“modify” awork meansto copy from or adapt all or part of thework in afashion requiring copyright
permission, other than the making of an exact copy. The resulting work is called a“modified version”
of the earlier work or awork “based on” the earlier work.

A “covered work” means either the unmodified Program or awork based on the Program.

To “propagate” a work means to do anything with it that, without permission, would make you
directly or secondarily liable for infringement under applicable copyright law, except executing it on
a computer or modifying a private copy. Propagation includes copying, distribution (with or without
modification), making available to the public, and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make or receive
copies. Mere interaction with a user through a computer network, with no transfer of a copy, is not
conveying.

An interactive user interface displays “Appropriate Legal Notices’ to the extent that it includes a
convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2)
tellsthe user that there is no warranty for the work (except to the extent that warranties are provided),
that licensees may convey the work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a menu, a prominent item in the
list meets this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modifications to it.
“Object code” means any non-source form of awaork.

A “Standard Interface” means an interface that either is an official standard defined by a recognized
standards body, or, in the case of interfaces specified for a particular programming language, one that
iswidely used among developers working in that language.

The“System Libraries’ of an executable work include anything, other than the work as awhole, that
(a) is included in the normal form of packaging a Major Component, but which is not part of that
Magjor Component, and (b) serves only to enable use of the work with that Major Component, or to
implement a Standard Interface for which an implementation is available to the public in source code
form. A “Magjor Component”, in this context, means a major essential component (kernel, window
system, and so on) of the specific operating system (if any) on which the executable work runs, or a
compiler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code needed to
generate, install, and (for an executable work) run the object code and to modify the work, including
scriptsto control those activities. However, it does not include thework’ s System Libraries, or general-
purpose tools or generally available free programs which are used unmodified in performing those
activities but which are not part of the work. For example, Corresponding Source includes interface
definition files associated with source files for the work, and the source code for shared libraries and

76

Draft

GNU General Public Draft
License version 3

dynamically linked subprograms that the work is specifically designed to require, such as by intimate
data communication or control flow between those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate automatically from
other parts of the Corresponding Source.

The Corresponding Source for awork in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program, and are
irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running acovered work is covered by this
License only if the output, given its content, constitutes a covered work. This License acknowledges
your rights of fair use or other equivalent, as provided by copyright law.

Y ou may make, run and propagate covered works that you do not convey, without conditions so long
as your license otherwise remains in force. You may convey covered works to others for the sole
purpose of having them make modifications exclusively for you, or provide you with facilities for
running those works, provided that you comply with theterms of thisLicensein conveying all material
for which you do not control copyright. Those thus making or running the covered works for you must
do so exclusively on your behalf, under your direction and control, on terms that prohibit them from
making any copies of your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated below.
Sublicensing is not alowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-
Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any applicable law
fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such measures.

When you convey acovered work, you waiveany legal power to forbid circumvention of technological
measures to the extent such circumvention is effected by exercising rights under this License with
respect to the covered work, and you disclaim any intention to limit operation or modification of the
work as a means of enforcing, against the work’s users, your or third parties' legal rights to forbid
circumvention of technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any medium,
provided that you conspicuously and appropriately publish on each copy an appropriate copyright
notice; keep intact al notices stating that this License and any non-permissive terms added in accord
with section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

Y ou may charge any price or no price for each copy that you convey, and you may offer support or
warranty protection for afee.

5. Conveying Modified Source Versions.

Y ou may convey awork based on the Program, or the modificationsto produce it from the Program, in
theform of source code under theterms of section 4, provided that you also meet al of these conditions:

77

Draft

GNU General Public Draft
License version 3

a. Thework must carry prominent notices stating that you modified it, and giving arelevant date.

b. The work must carry prominent notices stating that it is released under this License and any
conditions added under section 7. This requirement modifies the requirement in section 4 to “keep
intact all notices”.

c. You must license the entire work, as a whole, under this License to anyone who comes into
possession of a copy. This License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts, regardless of how they are packaged.
This License gives no permission to license the work in any other way, but it does not invalidate
such permission if you have separately received it.

d. If thework hasinteractive user interfaces, each must display Appropriate Legal Notices; however,
if the Program has interactive interfaces that do not display Appropriate Legal Notices, your work
need not make them do so.

A compilation of a covered work with other separate and independent works, which are not by
their nature extensions of the covered work, and which are not combined with it such as to form
a larger program, in or on a volume of a storage or distribution medium, is called an “aggregate’
if the compilation and its resulting copyright are not used to limit the access or legal rights of the
compilation’s users beyond what the individual works permit. Inclusion of a covered work in an
aggregate does not cause this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5, provided
that you also convey the machine-readable Corresponding Source under the terms of this License, in
one of these ways:

a. Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by the Corresponding Source fixed on a durable physica medium
customarily used for software interchange.

b. Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by a written offer, valid for at least three years and valid for as long as
you offer spare parts or customer support for that product model, to give anyone who possesses the
object code either (1) acopy of the Corresponding Source for all the software in the product that is
covered by this License, on adurable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this conveying of source,
or (2) accessto copy the Corresponding Source from a network server at no charge.

c. Convey individual copies of the object code with a copy of the written offer to provide the
Corresponding Source. This aternative is alowed only occasionally and noncommercialy, and
only if you received the object code with such an offer, in accord with subsection 6b.

d. Convey the abject code by offering access from a designated place (gratis or for a charge), and
offer equivalent access to the Corresponding Source in the same way through the same place at
no further charge. Y ou need not require recipients to copy the Corresponding Source along with
the abject code. If the place to copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party) that supports equivaent copying
facilities, provided you maintain clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain
obligated to ensure that it is available for as long as needed to satisfy these requirements.

e. Convey the object code using peer-to-peer transmission, provided you inform other peers where
the object code and Corresponding Source of the work are being offered to the general public at
no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source
as a System Library, need not be included in conveying the object code work.

78

Draft

GNU General Public Draft
License version 3

A “User Product” is either (1) a “consumer product”, which means any tangible personal property
which is normally used for personal, family, or household purposes, or (2) anything designed or sold
for incorporation into a dwelling. In determining whether a product is a consumer product, doubtful
cases shall be resolved in favor of coverage. For a particular product received by a particular user,
“normally used” refersto atypical or common use of that class of product, regardless of the status of
the particular user or of the way in which the particular user actually uses, or expects or is expected
to use, the product. A product isaconsumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent the only significant mode
of use of the product.

“Installation Information” for a User Product means any methods, procedures, authorization keys, or
other information required to install and execute modified versions of a covered work in that User
Product from amaodified version of its Corresponding Source. The information must suffice to ensure
that the continued functioning of the modified object code isin no case prevented or interfered with
solely because modification has been made.

If you convey an object code work under this section in, or with, or specifically for use in, a User
Product, and the conveying occurs as part of a transaction in which the right of possession and use
of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of
how the transaction is characterized), the Corresponding Source conveyed under this section must be
accompanied by the Installation Information. But this requirement does not apply if neither you nor
any third party retains the ability to install modified object code on the User Product (for example,
the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement to continue to
provide support service, warranty, or updates for a work that has been modified or installed by the
recipient, or for the User Product in which it has been modified or installed. Access to a network may
be denied when the modification itself materially and adversely affects the operation of the network
or violates the rules and protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with this section
must be in aformat that is publicly documented (and with an implementation available to the public
in source code form), and must require no special password or key for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions’ are terms that supplement the terms of this License by making exceptions
from one or more of its conditions. Additional permissions that are applicable to the entire Program
shall be treated as though they were included in this License, to the extent that they are valid under
applicable law. If additional permissions apply only to part of the Program, that part may be used
separately under those permissions, but the entire Program remains governed by this License without
regard to the additional permissions.

When you convey acopy of acovered work, youmay at your option remove any additional permissions
from that copy, or from any part of it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place additional permissions on
material, added by you to a covered work, for which you have or can give appropriate copyright
permission.

Notwithstanding any other provision of this License, for material you add to a covered work, you may
(if authorized by the copyright holders of that material) supplement the terms of this License with
terms:

a. Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this
License; or

b. Requiring preservation of specified reasonable legal notices or author attributions in that material
or inthe Appropriate Legal Notices displayed by works containing it; or

79

Draft

GNU General Public Draft
License version 3

c. Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of
such material be marked in reasonable ways as different from the original version; or

d. Limiting the use for publicity purposes of names of licensors or authors of the material; or

e. Declining to grant rights under trademark law for use of some trade names, trademarks, or service
marks; or

f. Requiring indemnification of licensors and authors of that material by anyone who conveys the
material (or modified versions of it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on those licensors and authors.

All other non-permissive additiona terms are considered “further restrictions’ within the meaning
of section 10. If the Program as you received it, or any part of it, contains a notice stating that it is
governed by this License along with aterm that is a further restriction, you may remove that term.
If alicense document contains a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms of that license document,
provided that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source
files, a statement of the additional terms that apply to those files, or a notice indicating where to find
the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately written
license, or stated as exceptions; the above requirements apply either way.

8. Termination.

Y ou may not propagate or modify a covered work except as expressly provided under this License.
Any attempt otherwise to propagate or modify it isvoid, and will automatically terminate your rights
under this License (including any patent licenses granted under the third paragraph of section 11).

However, if you ceaseall violation of thisLicense, then your license from aparticular copyright hol der
is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates
your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright
holder naotifies you of the violation by some reasonable means, thisisthe first time you have received
notice of violation of this License (for any work) from that copyright holder, and you curetheviolation
prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have
received copies or rights from you under this License. If your rights have been terminated and not
permanently reinstated, you do not qualify to receive new licenses for the same material under section
10.

9. Acceptance Not Required for Having
Copies.

Y ou are not required to accept this License in order to receive or run acopy of the Program. Ancillary
propagation of acovered work occurring solely as aconseguence of using peer-to-peer transmission to
receive a copy likewise does not require acceptance. However, nothing other than this License grants
you permission to propagate or modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a covered work, you indicate your
acceptance of this Licenseto do so.

80

Draft GNU General Public Draft
License version 3

10. Automatic Licensing of Downstream
Recipients.

Each time you convey a covered work, the recipient automatically receives alicense from the original
licensors, to run, modify and propagate that work, subject to this License. Y ou are not responsible for
enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or substantialy all
assets of one, or subdividing an organization, or merging organizations. |f propagation of a covered
work results from an entity transaction, each party to that transaction who receives a copy of the work
also receives whatever licenses to the work the party’ s predecessor in interest had or could give under
the previous paragraph, plus aright to possession of the Corresponding Source of the work from the
predecessor ininterest, if the predecessor hasit or can get it with reasonable efforts.

Y ou may not impose any further restrictions on the exercise of the rights granted or affirmed under this
License. For example, you may not impose alicense fee, royalty, or other charge for exercise of rights
granted under thisLicense, and you may not initiate litigation (including across-claim or counterclaim
in alawsuit) alleging that any patent claim isinfringed by making, using, selling, offering for sale, or
importing the Program or any portion of it.

11. Patents.

A “contributor” isacopyright holder who authorizes use under this License of the Program or awork
onwhichthe Programisbased. Thework thuslicensed iscalled the contributor’ s* contributor version”.

A contributor’s “essential patent claims’ are all patent claims owned or controlled by the contributor,
whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by
this License, of making, using, or selling its contributor version, but do not include claims that would
be infringed only as a consequence of further modification of the contributor version. For purposes
of this definition, “control” includes the right to grant patent sublicensesin a manner consistent with
the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the
contributor’ sessential patent claims, to make, use, sell, offer for sale, import and otherwiserun, modify
and propagate the contents of its contributor version.

Inthefollowing three paragraphs, a“ patent license” isany express agreement or commitment, however
denominated, not to enforce a patent (such as an express permission to practice a patent or covenant
not to sue for patent infringement). To “grant” such apatent license to a party means to make such an
agreement or commitment not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source
of the work is not available for anyone to copy, free of charge and under the terms of this License,
through apublicly available network server or other readily accessible means, then you must either (1)
cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of
the patent license for this particular work, or (3) arrange, in amanner consistent with the requirements
of thisLicense, to extend the patent license to downstream recipients. “Knowingly relying” meansyou
have actual knowledge that, but for the patent license, your conveying the covered work in a country,
or your recipient’s use of the covered work in a country, would infringe one or more identifiable
patentsin that country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by
procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving
the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered
work, then the patent license you grant is automatically extended to all recipients of the covered work
and works based on it.

81

Draft

GNU General Public Draft
License version 3

A patent license is “discriminatory” if it does not include within the scope of its coverage, prohibits
the exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically
granted under this License. Y ou may not convey a covered work if you are a party to an arrangement
with athird party that isin the business of distributing software, under which you make payment to
the third party based on the extent of your activity of conveying the work, and under which the third
party grants, to any of the parties who would receive the covered work from you, a discriminatory
patent license (@) in connection with copies of the covered work conveyed by you (or copies made
from those copies), or (b) primarily for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement, or that patent license was granted,
prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or other
defenses to infringement that may otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of this License. If you cannot
convey a covered work so as to satisfy simultaneously your obligations under this License and any
other pertinent obligations, then as a consequence you may not convey it at all. For example, if you
agree to terms that obligate you to collect a royalty for further conveying from those to whom you
convey the Program, the only way you could satisfy both those terms and this License would be to
refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public
License.

Notwithstanding any other provision of this License, you have permission to link or combine any
covered work with awork licensed under version 3 of the GNU Affero General Public License into
asingle combined work, and to convey the resulting work. The terms of this License will continue to
apply to the part which is the covered work, but the specia requirements of the GNU Affero General
Public License, section 13, concerning interaction through a network will apply to the combination
as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU General Public
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.

Each versionisgiven adistinguishing version number. If the Program specifiesthat acertain numbered
version of the GNU General Public License“or any later version” appliesto it, you have the option of
following the terms and conditions either of that numbered version or of any later version published by
the Free Software Foundation. If the Program does not specify a version number of the GNU General
Public License, you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General Public
License can be used, that proxy’s public statement of acceptance of aversion permanently authorizes
you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no additional
obligations are imposed on any author or copyright holder as a result of your choosing to follow a
later version.

82

Draft GNU General Public Draft
License version 3

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESSFOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU
ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR
CONVEYSTHE PROGRAM ASPERMITTED ABOVE, BELIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT
NOT LIMITED TOLOSSOF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES
SUSTAINED BY YOU OR THIRD PARTIESOR A FAILURE OF THE PROGRAM TO OPERATE
WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given loca legal
effect according to their terms, reviewing courts shall apply local law that most closely approximates
an absolutewaiver of all civil liability in connection with the Program, unlessawarranty or assumption
of liability accompanies a copy of the Program in return for afee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New
Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the
best way to achieve thisisto make it free software which everyone can redistribute and change under
these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each
source file to most effectively state the exclusion of warranty; and each file should have at least the
“copyright” line and a pointer to where the full notice is found.

one line to give the programis nane and a brief idea of what it does.
Copyright (C year nanme of author

This programis free software: you can redistribute it and/or nodify
it under the terns of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This programis distributed in the hope that it will be useful,
but W THOUT ANY WARRANTY; wi thout even the inplied warranty of

83

Draft GNU General Public Draft
License version 3

MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the
GNU General Public License for npre details.

You shoul d have received a copy of the GNU General Public License
along with this program |f not, see http://ww.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it starts in an
interactive mode:

program Copyright (C) year name of author

This program comes wi th ABSOLUTELY NO WARRANTY; for details type ‘show w .
This is free software, and you are welcone to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w and ‘show ¢’ should show the appropriate parts of the
General Public License. Of course, your program’s commands might be different; for aGUI interface,
you would use an “about box”.

Y ou should also get your employer (if youwork asaprogrammer) or school, if any, to signa*“ copyright
disclaimer” for the program, if necessary. For more information on this, and how to apply and follow
the GNU GPL, see http://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit linking
proprietary applications with the library. If thisis what you want to do, use the GNU Lesser General
Public Licenseinstead of thisLicense. But first, please read http://www.gnu.org/philosophy/why-not-
Igpl.html.

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/
http://www.gnu.org/philosophy/why-not-lgpl.html
http://www.gnu.org/philosophy/why-not-lgpl.html

Wolframe Clients

Clients to access Wolframe

Draft Draft

Wolframe Clients: Clients to access Wolframe
Publication date Aug 29, 2014 version 0.0.3
Copyright © 2010 - 2014 Project Wolframe

Commercial Usage. Licensees holding valid Project Wolframe Commercial licenses may use this file in accordance with the Project
Wolframe Commercia License Agreement provided with the Software or, alternatively, in accordance with the terms contained in a written
agreement between the licensee and Project Wolframe.

GNU General Public License Usage. Alternatively, you can redistribute this file and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

Wolframe is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

Y ou should have received a copy of the GNU General Public License along with Wolframe. If not, see http://www.gnu.org/licenses/

If you have questions regarding the use of thisfile, please contact Project Wolframe.

http://www.gnu.org/licenses/

Draft Draft

Table of Contents

O | gL oo (01T o o R TSP PP RPP PR 1
2. CHENtS WIth PHP ... et 2
2.1, REQUITEITIENES ... eetieeeiii ettt ettt e et e et e e e et e et et n e e e eb e e e enba s 2
2.2. PHP client MOAUIEScouuniiiiiiie ettt e e e e e 2
2.2.1. Example script implementing a reqUuESEoveieviieiiiiieeeee e 2
2.2.2. Example script for apassword changeccoiviiiiiiiiiiiii e 2
2.2.3. The SESSION INEEITACE ... e 2

2.3, INSEBITELION ..ottt ettt e e et et e e e e e na e 3
3. ClentS With INET (CH) ..o et et e e 4
3L CHClIENt MOTUIES ... e 4
3. L1 EXAMPIE SCIIPL ..ttt ettt et 4
3.1.2. The SESSION INEEITACEiiiiii e 4
3.1.3. The SESSION CONSIIUCTONeeevtueeiiiiiieeeiit e e ettt e e et e e e et e e e et e e e eraaeeeens 5

O 1= 01 £ 1 1 o T O PR 7
A1, ATCIITECTUNE ...ttt ettt e e e e e e e e eneas 7
A2, ATTITACLS .ot 7
A2 1. UL TOMMNS <ottt ettt e e et e e et e e eena e aeens 7
4.2.2. Ul fOrm translationsc.uuiiiiiiiiiiiii e e 7
4.2.3. RESOUICEScvtieieieeei ettt ettt et et et e et et et et e e e e eaa e enes 7

4.3. Programming the iNterfaceoiiiiiiii e 7
4.3.1. MaPPING XML daEA ..cevuieieiiieeeiii e 8
SEATING POSITION ..ttt e 8

FIrSt @XAMPIE ...t 8

ANONEr EXEAMPIE ...t 9

4.3.2. SWItching Ul FOIMSeiiiiii e 10
4.3.3. States and DENAVIOUIuuiiiiiiiieeiiii e e 10
Reserved private dynamiC Propertiesuuvveveiuinieieiieeeei e 10

Reserved public dynamiC Propertiesoveveveiieiiiiieeeeiie e 10

Stearing of widget behaviour ..o 10

User interface fIOWo..uiiiiii e 11

Additional interface lements ..o 11

Defining Server reqUESL/aNSIVESoceeerinieeiiiiieeeeei e e 11

Variables and symbolic lINKSooviiiiiiiiiii e, 12

Widget states depending on datavveeeeiiiiiiiiiiieee e 13

Additional signals and SIOLSceeeviiiiiii e 13

Drag and drop ...cccovneiiiiieeii e 13

4.3.4. Widget properties as dynamic property ValueSoevevevviieeiiiiinnereiinnnnn. 14

4.4. Programming SErver reQUESIS/ANSIWETScceuuuneiiiii ettt e eeeie e et e e e e e enaa e 14
4.4.1. Adressing Widget dalaluuveeeeiiieiiiii e 14
Biggest common ancestor Pathocoeviiiiiiii 14
Addressing atomiC &lEmMENtSoiiiiiiiiiii e 14

Special path EemMeNtScoovuiiiiii 15
Addressing the form Widgetuiviiiiiiiii e 15

WiIdGEL TINKS ..o e 15

4.4.2. DA SITUCLUIES ...ceeuieiiict ettt ettt e et e e e 15
EXBIMPIE L. 15

A3, ATTAYS .ottt 15
DESCIIPLION ...ttt 15

EXBIMPIE L. 16

4.4.4. Indirection and FECUISIONcoeuuuuieeiiiiae et e et e et e et e e e eeees 16
DESCHIPLION ...ttt 16

Example (arbitrary treg)oveoiiiiiie 16

Example (DINary treg)oveeiiiiiei e 16

4.5. Eliminating interface defeCtSooovuriiiii e 17
4.5.1. Switch the developer MOde 0Ncoevviiiiiiiii e 17

IXxxvii

Draft

Wolframe Clients Draft

IXxxviii

Draft Draft

List of Tables
2.1. PHP MOTUIES FEOUITEDeieiieii ettt e e et e e et eeeere e eenes 2
2.2. PHP Client MOTUIESoouuiiiii ettt e et e e e et e e e ene e eeees 2
3L CHClIENt MOUUIES ...ttt e e e e 4
A1, PrOPEITIES ...ttt 10
A2, PrOPEITIES ..ttt 11
A.3. PrOPEITIES ..ttt 11
A4, PrOPEITIES ...ttt ettt et 11
A5, PrOPEITIES ...ttt 12
A8, PrOPEITIES ...ttt 13
A7, PrOPEITIES ...ttt et 13
4.8. BasiC elements Of reqUESI/BNSWESc.uuuiiiiii et 14
4.9, TYPES OF BITAYS ..evveeeeeiii ettt ettt e et e ettt e e e et e e e ea b e e e eata e eaees 15
4.10. TYPES Of INAITECHIONSeeeteeeeii ettt et e et e e 16

IXxxix

Draft Draft

Chapter 1. Introduction

This part of the manual describes how the user interface part (presentation tier or client) of Wolframe
applications can be built.

A Wolframe client can be of various kinds. They all communicate with the server over atext based
protocol in aplain or encrypted session. All methods used are based on open standards.

Wewill introduce someexamplesof clients: The Wolframe standard client writtenin Qt (C++), a.NET
client writtenin C#and aweb client writtenin PHP communicating viaaweb server with the Wolframe
application server.

After reading this chapter you should be able to create a Wolframe client based of one of these
examples on your own.

Draft

Draft

Chapter 2. Clients with PHP

This chapter describes how you can call Wolframe from aweb service. It will show how aWolframe
command can beissued as HTTP call and how it is mapped in the Webserver by a scripting language.
We use PHP as example language. The example is so simple that you can easily map it to other
languages than PHP. We took PHP because its use for web services is so widespread nowadays.

2.1. Requirements

The minimum PHP version required for the client is 5.3. The following additional PHP modules have
to be installed:

Table2.1. PHP modulesrequired

Name Description

php5-mcrypt Encryption functions needed for the password change protocol of
WOLFRAME-CRAM.

2.2. PHP client modules

2.2.1.

2.2.2.

2.2.3.

In the subdirectory clients/php of the Wolframe installation you'll find the following source files you
need. The main module you need to call to establish a session and to issue requests is session.php.
The other files are helper classes for the client:

Table2.2. PHP client modules

Name Description

session.php implements the Wolframe client/server protocol behind the scenes with a
simple interface to send requests to the server and receive the answers.

connection.php defines the base class of the connection to a Wolframe server with methods
to read and write messages

wolframe_cram.php implements helper functions needed to implement the authentication with
the Wolframe-CRAM mech and its password change protocol.

pbkdf2.php implements the function hash_pbkdf2 available in PHP 5.5. for PHP 5.3.

(patch published on php.net)

Example script implementing a request

The script examples/clients/php/webclient_form_xml.php shows the mechanisms of using the PHP
client modulesto create aclient calling Wolframe from aweb service. It takesaHTTP request, builds
an XML document and a Wolframe server request with this document, passes the request to the server
and returns the answer XML to the web client. In case of error an XML with the error message is
returned.

Example script for a password change

The script examples/clients/php/webclient_change password.php shows the changing of password
when authenticated with "WOLFRAME-CRAM". It takes a HT TP request, authenticates an initiates
apassword change. In case of error an XML with the error message is returned.

The session interface

In the following we shortly introduce the Wolframe session interface implemented in clients/php/
session.php.

Draft

Clients with PHP Draft

nanespace Wl frane

{

requi re 'connection. php';
use Wl frame\ Connecti on as Connecti on;

cl ass Session extends Connection

{

/* Constructor

* @araniin] address Wl frane server |IP address to connect

* @aranfin] port Wlfrane server port to connect

* @araniin] sslopt array of PHP options for SSL. The options

* are not interpreted, but directly passed to to the SSL
* stream context with stream context_set_option(..)

* @araniin] authopt authorization options defining the nechani sm

* and dependi ng on the mechani sm the credentials needed.
*/

function __construct($address, $port, $sslopt, S$aut hnethod);

/* Change the users password

* @araniin] the old password

* @araniin] the new password

* @enmark The function throws in case of an error.

* @emark The function is blocking on read/wite on its connection
*/

public function changePassword($ol dpassword, $newpasswor d)

* Send a request to the server
@aran{in] conmand (optional) identifier prefix of the command
to execute.
@aranfin] content content of the request (docunent to process)
@eturn FALSE, if the server reports an error in processing
the request. The error details can be inspected with
lasterror(). In case of success the function returns
t he request answer string.
@emark The function throws in case of a systemor protocol error.
@emark The function is blocking on read/wite on its connection

* %k X kX Xk X kX T~

~

public function request($command, $content);

/[* Get the last error returned by the Wl frane server (protocol).
* @eturn the |l ast error

*/

public function lasterror();

} // class Session
} // namespace Wl frane

2.3. Installation

For making it work you just have to configure your web service to run the PHP scripts and to install
the PHP scripts and the SSL credentials at the right place. See the tutorial for details.

Draft

Draft

Chapter 3. Clients with .NET (C#)

This chapter describes how you can call Wolframe from .NET. As example language C# is used.
The client implementation introduced here has an asynchronous interface with a synchronous
implementation. Theclient isfeeded with requests over aqueue and theissuer of arequest getsnotified
over adelegate bound to the request. An example program will show it's use.

3.1. C# client modules

3.1.1.

3.1.2.

In the subdirectory clients/dotnet/csharp/WolframeClient of the Wolframe installation you'll find a
Microsoft Visual Studio project file and the following source files you need for a Wolframe C# client.
The main module you need to call to establish a session and to issue requests is Session.cs, or the
interface Sessionlnterface.cs respectively. The other files are helper classes for the client:

Table 3.1. C# client modules

Name Description

Sessionlnterface.cs interface of the Wolframe server session

Session.cs implements the Wolframe client/server protocol behind the scenes with a
simpleinterface to issue requests with a notification delegate to handle the
answer.

Connectionlnterface.cs |interface of the Wolframe server connection

Connection.cs implements the base class of the connection to a Wolframe server with
methods to read and write messages

Protocol.cs some helper functions to handle LF dot escaping/unescaping and parse
protocol messages from the server.

ObjectQueue.cs implementation of the message queue used as standard queue with
concurrent access and notification.

Serializer.cs implementation of the serialization/deserialization of C# objects sent to the

server and received from the server as XML

Example script

The script examples/clients/dotnet/csharp/Program.cs shows the mechanisms of using the C# client
modules to create a .NET client for Wolframe. The example program defines the request and the
answer type as C# class, creates a session object, issuestherequest, sleepsfor asecond (for simplicity)
so that the request gets processed and shuts down the connection.

The session interface

Here is the Wolframe session interface implemented in clients/dotnet/csharp/Sessionl nterface.cs:

usi ng System

usi ng System Col | ecti ons. Generi c;
usi ng System Li ng;

usi ng System Text;

nanespace Wl franmed i ent

{

public class Request

{
public int id { get; set; } /1< id of the request

Draft Clientswith .NET (C#) Draft

public int nunber { get; set; } /1l < nunmber of the request
public string command { get; set; } ///< conmand prefix of the request
public string doctype { get; set; } [///< docunent type of the request
public string root { get; set; } /1/< root elenent of the request
public object obj { get; set; } /1< serializable request object
public Type objtype { get; set; } /1< request object type
public Type answertype { get; set; } ///< answer object type
b
public class Answer
{
/11l \brief Answer type (execution status)
public enum MsgType {
Error, /ll< fatal error in the request
Fai |l ure, /1l< the request failed, the session is still alive
Resul t /1< successful execution of the request
b
public MsgType nsgtype { get; set; } ///< status of the answer
public int id { get; set; } /1/<id of the request
public int nunber { get; set; } /1l < nunmber of the request
public object obj { get; set; } /1l < answer obj ect
b
interface Sessionlnterface
{
/1] \brief Connect to the server and do the initial
111 handshake wi th authentication
bool Connect ();
/1l \brief Signal the server to process all pending requests
111 and to shutdown
voi d Shut down();
/1l \brief Cl ose the connection (abort pending requests)
void O ose();
/1] \brief Issue a request. The answer is delivered with a cal
111 of Answer Cal | back (passed with the constructor)
voi d | ssueRequest (Request request);
/1] \brief Return the total nunber of open requests
111 (in the queue or already sent)
i nt Nof OpenRequests();
/1] \brief Get the last fatal (unrecoverable) error reported
string GetlLastError();
}

3.1.3. The session constructor

Hereisthe signature of the Session constructor as defined in clients/dotnet/csharp/Session.cs:

nanespace Wl franmed i ent

{

public class Session
. Sessionlnterface

public class Configuration
: Connection. Configuration

Draft Clientswith .NET (C#) Draft

{
public string banner { get; set; }
public string authnethod { get; set; }
public string usernane { get; set; }
public string password { get; set; }
public string schemadir { get; set; }
public string schemaext { get; set; }
public Configuration()
{
banner = null;
aut hmet hod = nul I ;
username = null;
password = null;
schemadir = "http://ww. wol frane. net";
schemaext = "xsd";
}
b

public del egate void Answer Cal | back(Answer mnsg);

public Session(Configuration config_, AnswerCallback answerCal |l back_);

b

Draft

Draft

Chapter 4. Clients with Qt

This chapter describes the standard Wolframe client called wolfclient based on Qt and how a user
interface is built with it.

4.1. Architecture

The Wolframe standard client wolfclient is a thin client which executes XML requests via the
Wolframe protocol and presents XML answers. It iswrittenin Qt and iscross-platform. Qt iscurrently
available on http://doc.qt.digia.com/qt/index.html. User interfaces for wolfclient are defined as a set
of forms using standard Qt widgets and are if ever possible defined using the Qt Interface Designer
(see http://qt-project.org/doc/qt-4.8/designer-manual .html).

4.2. Artifacts

4.2.1.

4.2.2.

4.2.3.

Thewolfclient rendersuser interface formsdynamically, thismeans no code generation or compilation
isinvolved when creating user interfaces for Wolframe.

Ul forms

The Ul files follow the schema 'qt-ui-4.7.xsd', as documented in http://qt-project.org/doc/qt-4.8/
designer-ui-file-format.html. The Ul files have the extension .ui

Ul files are created and edited with the Qt designer.

Ul form translations

The wolfclient uses the Qt trandlation format, version 2.0 for form translations as described in http://
gt-project.org/doc/qt-4.8/linguist-ts-file-format.htmll [http://qt-project.org/doc/qt-4.8/linguist-ts-file-
format.html]. Those are the files with extension .ts.

The trandation files can get merged and generated with the lupdate tool, then translated with the Qt
Linguist.

The Qt client needs the files in compiled form as files with the extension .gm. The lupdate tool is
taking care of that.

Read more on trandlations in http://qt-project.org/doc/qt-4.8/linguist-manual .html.

Resources

Binary resource files contain images for the user interface.

Binary resource files (extension .rss) are compiled from a XML file (extension .grc) with the rcc
resource compiler.

4.3. Programming the interface

Programming means we annotate the XML of the Ul form files with some extra properties. They
control the following things:

» Which events in the current form replace it with a new form, e. g. clicking the Edit button loads
the form called edit_item.

* When and how requests to the Wolframe server should be sent and how the results should be
interpreted when adding data to the widgets, e.g. executing a save item request with al the datain
the text fields of the form added to the request XML.

http://doc.qt.digia.com/qt/index.html
http://qt-project.org/doc/qt-4.8/designer-manual.html
http://qt-project.org/doc/qt-4.8/designer-ui-file-format.html
http://qt-project.org/doc/qt-4.8/designer-ui-file-format.html
http://qt-project.org/doc/qt-4.8/linguist-ts-file-format.html
http://qt-project.org/doc/qt-4.8/linguist-ts-file-format.html
http://qt-project.org/doc/qt-4.8/linguist-ts-file-format.html
http://qt-project.org/doc/qt-4.8/linguist-ts-file-format.html
http://qt-project.org/doc/qt-4.8/linguist-manual.html

Draft Clients with Qt Draft

4.3.1. Mapping XML data

Starting position

For mapping data structures from the user interface elements to the data description needed to fulfill
an interface for aserver request we need some kind of translation. An implicit mapping would only be
able to describe very trivial data mappings. After drawing the user interface this translation has to be
defined. On the other hand the requests answer returned by the server has to be mapped to be shown
in the user interface elements view. Here applies the same: Some kind of translation is needed to map
aserver data structure to the user interface elements.

First example

Let'shavealook at aQLi neEdi t element of aform and a possible XML representation of the data
used for arequest.

0 Customer - simple_form.ui

. Name: . |John Smith

" Address: | Blue Police Box

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<! DOCTYPE cust omer SYSTEM ' Cust oner' >
<cust omer >
<nane>John Sm t h</ name>
<addr ess>Bl ue Pol i ce Box</ address>
</ cust oner >

For aninsert or update request that transmits all data of the form to the server we have to fill the name
field and the address field into the request data structure XML. The translation is defined as dynamic
property "action" or "action." plus a suffix for the action identifier if needed. We will explain this
naming of actions later. The value of the property is describing the request and could look as follows:

updat e: Customer custoner {name{{main.nane}}; address{{main.address}}}

For theinitial filling of the form with data we submit arequest that just sends an id to the server. The
answer that isreturned by the server hasthen to betranslated tofill the namefield and the addressfield
of the form. The trand ation is defined as dynamic property "answer" or "answer." plus a suffix for the
action identifier. A detailed description of the language in the request and answer property value that
describes requests and answers will presented in the next chapter. We provide here just an example:

Cust oner custoner {nanme{{mai n. nane}}; address{{main.address}}}

Draft Clients with Qt Draft

Another example

Some elements are more complicated than that. They present the user a list of options or items the
user to pick from, e.g. alist of cities.

B Customer - complex_form,ui MNES

Name: |John Smith

Address: |E:Iue Police Box

City: Tokyo
Lima
Beijing
Cairo
Tehran

L

Santa Fe de Bogota ;l

When the form is saved, the currently selected element is written into the resulting XML:

<cust omer >
<name>John Sm t h</ nane>
<addr ess>Bl ue Pol i ce Box</ address>
<city>6</city>

</ cust oner >

In this case the widget with the city list can load its own domain data as a separate XML request:

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE city SYSTEM ' CityLi st Request' >
<cities/>

and the corresponding domain load request answer definition in the dynamic property "answer" could
look like this:

CityList cities {city[] {id={main.city.id}; {main.city.value}}}

Draft

Clients with Qt Draft

4.3.2.

4.3.3.

Theanswer containsall possiblevaluesinthedomain, in our casealist of all citiesand their internal id.

<?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
<I DCCTYPE "cities" SYSTEM "Ci tyList">

<cities>

<city id="1" >Tokyo</city>
<city id='2">Lima</city>
<city id="3">Beijing</city>
<city id="4">Cairo</city>
<city id='5">Tehran</city>
<city id='6"'>London</city>

</cities>

Switching Ul forms

A Ul form contains a set of widgets, the dynamic property f or mcontains the name of a widget
(without extension .ui) to load.

For linking a push QPushBut t on click in the Qt designer to the switching of the form you have
to attach a dynamic property named f or mof type st ri ng to the corresponding widget of type
QPushBut t on:

@ Form - action_on_pushbutton.ui MES | QPushButton |

- autoDefault r
.. default r
i flat r
Glform | =

Before loading the next form the client terminates all current requests, for instance a save request of
the form data. In case of an error in an action any defined switching of the form is cancelled.

States and behaviour

Reserved private dynamic properties

The _w_ prefix is used for internal widget properties not of interest for the user.

Reserved public dynamic properties

The dynamic properties introduced here are edited by the user to stear application behaviour:

Stearing of widget behaviour

The following properties are reserved for states steering the behavior of the user interface:

Table4.1. Properties

Name Description

initial Focus Boolean vauefor onewidget inaform that should
get theinitial keyboard focus.

10

Draft Clients with Qt Draft

User interface flow

The following properties stear the user interface elements flow:

Table 4.2. Properties

Name

Description

form

Defines a form to be opened on click (push
button). If the widget has an action defined, then
the action is executed before and the form is
opened when the action succeeds and not opened
when it fails.

form:IDENTIFIER

Defines a form related to a context menu entry
with identifier IDENTIFIER. If the context menu
entry has also an action defined, then the action
is executed before. The form is opened only if the
action succeeds.

Additional interface elements

The following properties define additional interface elements:

Table 4.3. Properties

Name

Description

contextmenu

Defines a context menu with a comma separated
list of identifiers of actions defined as propery
value. Two following commas without menu
entry identifier are used to define a separator.

contextmenu:NAME

Defines the (trandatable) text of a context menu
entry. NAME refers to a non empty name in the
list of context menu entries.

Defining server request/answer

The following properties are used for the communi cation with the server:

Table4.4. Properties

Name

Description

action

Defines a server request. This can either be aload
action request for awidget that isnot apush button
or an action request without answer than OK/
ERROR for a push button

action:IDENTIFIER

Defines an action request either related to a
context menu entry (when clicked) or related to
a dataslot declaration of this widget named with
IDENTIFIER.

dropmove

Defines a action request that is issued on a drop
request moving an object inside a widget or
between widgets of the same type (same object
name). The request is an action request without
other answer than success or failure. Refresh after
the action completed is triggered via a datasignal

11

Draft

Clients with Qt Draft

Name

Description

'datasignal :drop' defined in the drop widget and a
'datasignal:drag’ defined in the drag widget.

dropmove: OBJECTNAME

Defines a server reguest that is issued on a drop
request moving an object from a widget with
object name OBJECTNAME. The request is an
action request without other answer than success
or failure. Refresh after the action completed is
triggered viaadatasignal 'datasignal:drop' defined
in the drop widget and a 'datasignal:drag’ defined
in the drag widget.

dropcopy

Defines a action request that is issued on a drop
request copying an object inside a widget or
between widgets of the same type (same object
name). The kind of request and the signaling after
completion is the same for a'dropmove' action.

dropcopy:OBJECTNAME

Defines a server request that is issued on a drop
request copying an object from a widget with
object name OBJECTNAME. Thekind of request
and the signaling after completion is the same for
a'dropmove:OBJECTNAME' action.

Defines the format of the action request answer
linked to the widget activation (for example a
click on a push button).

answer:IDENTIFIER

Defines the format of the request answer of the
action defined as 'action:IDENTIFIER'

Variables and symbolic links

Table4.5. Properties

Name

Description

global:IDENTIFIER

Defines an assignment from a global variable
IDENTIFIER at initidization and writing the
global variable when closing the widget.

assign:PROP

Defines an assingment of property PROP to the
property defined as value "assign:PROP" on data
load and refresh

link:IDENTIFIER

Defines a symbolic link to another widget.
Defining the property "linki<name>" =
<widgetid>: defines <name> to be a reference to
the widget with the widgetid set to <widgetid>.
Links are used to read data from other widgets on
load and refresh.

widgetid

Unique identifier of the widget used for
identifying it when resolving symbolic links
or an address of a request aswer. When not
explicitely defined it is implicitely defined as
unique identifier on widget creation. Unique
means unique during one run of one client. It's a
simple counter plus the name of the widget.

synonym:NAME

Definesarenaming of theidentifier NAME to the
identifier in the property value. Be careful when

12

Draft Clients with Qt Draft

Name Description

using synonyms. They are the last construct you
should consider to usein the client.

Widget states depending on data

Table 4.6. Properties

Name Description

state:IDENFITIER Defines a state of the widget dependent on
a condition. IDENTIFIER is one of 'enabled’,
'disabled', 'hidden', ‘visible'. The state condition is
defined the property value. The value can be a
property referencein’{' '} brackets. The condition
is true when the property is defined. A condition
can also be a boolean expression of the form
<prop> <op> <value>, where <prop>isaproperty
reference in '{' "}' brackets, <op> an operator
and <value> a constant value Valid operators
are; '==' (string),!=" (string),'<=" (integer),
'<' (integer) ,'>=" (integer), ">' (integer) For 'action’
definitionsthe state 'state:enabled' isdependent on
the properties referenced in the ‘action’ value.

Additional signals and slots

Table4.7. Properties

Name Description

datasignal:IDENTIFIER Defines a signa of type IDENTIFIER
(clicked, doubleclicked, destroyed, signaled,
loaded, drag, drop) with the dot name
and destination address defined as property
value of "datasignal:IDENTIFIER" Datasignal
destinations can be defined as follows: As
widgetid, as dot identifier (declared with
‘datasiot’), as widget path. A preceding identifier
followed by ‘@' specifies what to do with the
widget of the target dot. If you specify 'close
there in aform top level widget then the form is
closed. Every other identifier causes a reload of
the widget.

dataslot Defines a comma separated list of slots for the
signal of with the property value as dlot identifer
and optionally followed by a widget id in '(..)'
brackets that sepcifies a sender from where the
signal is accepted.

Drag and drop

Drag and Drop events are defined with the properties 'dropmove’ and 'dropcopy’ that define the
action requests issued on a drop event. See description of the propertiesin "Defining Server Request/
Answer". For using drag and drop the property 'acceptDrops’ has to be enabled and the Widget has
to be capable to do drag and drop. Drag and drop is currently only possible for the Qt standard list
widgets, tree widgets and table widgets or for user defined widgets that delegate the mouse events

13

Draft

Clients with Qt Draft

4.3.4.

accordingly. We do not describe here how user defined widgets can implement this mechanism of
drag and drop.

What happens when an object is dragged from one object and dropped at another object is a request
sent to the server. To address the elements involved in drag and drop some variables are set before
issueing the request. These Variables can therefore be used in the request to specify the operation to
implement the drag and drop. One of these variables is a widget link ‘dragobj’ that points the origin
widget of the drag. With {dragobj.selected} we can address the item or set of items selected with the
drag. The other variable is 'dropid' that selects the value or id of the target widget of the drop. What
this value means is dependent on the widget class.

Besides the 'dropmove’ and 'dropcopy’ there are the datasignal properties 'datasignal:drag’ and
‘datasignal:drop' that can be used to specify the needed widget refresh signal sthat have to be performed
after the drag and drop operation.

Widget properties as dynamic property values

Dynamic properties can reference properties of widgetslikefor examplepr operty = {vari abl e
expr essi on}.

The expression can reference addressable widgets and their properties. Every Qt classhasitsvery own
set of propertiesit understands.

4.4. Programming server requests/answers

4.4.1.

Adressing widget data

Widget data elements elements are addressed by using the relative path of the element from the widget
where the request or answer was specified. The relative path is a sequence of widget object names
separated by dots (."). Only atomic element references are specified in request/answer structure.

Biggest common ancestor path

The grouping of elements into structures is done by the biggest common ancestor path of al atomic
element references in a structure. It is assumed that this biggest common ancestor is addressing the
structure. If for example a structure has the atomic widget element references "home.user.name" and
"home.user.id" then we assume that "home.user" is adressing the structure containing "name" and "id"
in the widget data.

Addressing atomic elements

Table 4.8. Basic elements of request/answer

Description Syntax

Constant (server request only) string with single () or double (") quotes or
numeric integral constant

Mandatory attribute name={ variablepath}

Mandatory content value name{ { variablepath} }

Optional attribute name={ variablepath: ?}

Optional content value name({ variablepath: 7} }

Optional attribute with default name={ variablepath;default}

Optional content with default value name{ { variablepath:default} }

Ignored attribute name={ ?}

14

Draft Clients with Qt Draft
Description Syntax
Ignored content value name{{ 7} }
Ignored sub structure name{ 7}

Special path elements

Variable references can address other widgets than sub widgets of the current widget.

Addressing the form widget

The reserved path element 'main’ addresses the form widget root.

Widget links

4.4.2.

A dynamic property with the prefix 'link:' followed by an identifier as name declares the widget
with the widget id as dynamic property value of the link definition to be referencable by name. The
referencing nameistheidentifier after the prefix 'link:". Soif wefor example defineadynamic property
link:myform' with a widget id as value, then we can use the variable 'myform’ in a widget path to
address the widget.

The mechanism of widget linksis mainly used for implementing form/sub-form relationships. A form
opens a subform and passesits widget id to it with the form parameter ‘widgetid=..". A link is defined
to the sub-form with the widget id passed to it. The subform signals some action to the parent that can
address the data entered in the subform viathis link.

Data structures

Structure elements are separated by semicolon ;' and put into '{" brackets '}' with the name of the
structure in front.

Example

4.4.3.

The following example shows an address as structure:

addr ess{
tag=1;
sur nane{ { per son. sur nane}};
pr ename{{ per son. prenane}};
street{{address.street}}

}

Arrays

Arrays are marked with opened and closed square brackets '[' ']' without specifying dimension
(arbitrary size or empty when missing).

Description

Table4.9. Typesof arrays

Description Syntax
Arbitrary Size Array of Content Values name[]{{ variablepath} }
Arbitrary Size Array of Structures name[]{ structure definition}

15

Draft

Clients with Qt Draft

Example

4.4.4.

The following example shows an array of addresses:

address[]{

sur nanme{{addr ess. surnane}};
prename{{address. prenane}};
street{{address.street}}

The widget element paths used to address the widget elements have to have a common ancestor path.
In our example this would be 'address. The common ancestor path is determining how elements
are grouped together in the widget. It tells what belongs together to the same array element in the
widget. Without common common ancestor path it would be impossible to determine what isforming
astructure in the widget data. It distinguishes the case of having an array of adresses and the case of
having an array of surnames, and array of prenames and an array of streets. The later makes not much
sense here. With the common prefix we state how entities are grouped together to structures in the
representation in the widget.

Indirection and recursion

Indirection allows to define recursive structures. Indirection means that an element is specified as
referencethat isexpanded when the element appearsin the datastructureto map. The grouping element
of the indirection elements is the common ancestor of all non indirection elements in the structure
containing the indirection.

Description

Table 4.10. Types of indirections

Description Syntax (hame equals ancestor |Syntax (name differs from
name) ancestor name)

Single Element Indirection Nancestor Aitem:ancestor

Multiple Indirection Aancestor(] Aitem:ancestor(]

Example (arbitrary tree)

Example representing a tree with arbitrary number of children per node:

iten{
i d={treew dget.id};
nane{{treew dget. nane}};
Niten]

}

Example (binary tree)

Example representing a binary tree:

16

Draft

Clients with Qt Draft

item
i d={treew dget.id};
nane{{treew dget. nanme}};
AMeft:item
Aright:item

4.5. Eliminating interface defects

4.5.1.

4.5.2.

Functional defectsin the user interface like for example syntax errorsin the definitions of the request
answer can be eliminated by inspecting the error messages reported by the wolfclient in developer
mode and fixing the interface accordingly.

Switch the developer mode on

In order to inspect the internals of your client program, we have first to switch on "Developer Mode"
in the "Developer" context of the "Preferences Dialog”. The following picture emphasizes the check
box you have to enable (highlighted green).

[Preferences & @ B &

E +'| Developer Mode

Interface Userinterface
Where to load user interface XML (ui Files), translaktions and
,—7? resources From. Productive systems Fetch them from the server.

Load mode

e Local file
Mebwark

Form directory. Projects/github/configurator/client/uiforms
Translations directory. ects/github/configurator/client/i18n
Resources directery! |/github/configurator/client/resources

Menus direckory: rojects/github/configurator/client/menus

Restore Defaulks I save @ cancel

Inspect errors and warnings and debug

messages reported

Toinspect internal messages reported by the wolfclient in developer mode we have to open the debug
window. The debug window is opened by clicking on the bug icon in the main tool bar or viathe
developer context menu. The following picture shows an example debug output. Each action we do
from now on with the debug window opened can be followed on the level of messages it emits.

We can see the messages in the message list when clicking on the "Refresh" button. The navigation
allows us to restrict our focus on messages on a node in the object tree by clicking on it. Clicking

17

Draft

Clients with Qt Draft

on the root node shows all messages in the recent history. The history starts with the last main node
created before opening the debug window. All message restrictions show the messages in order of
their emission. We can restrict also on the severity of messages in the severity level selection (the
select box set to "Debug” as default |eft of the "Refresh” button).

The"Clear" button allows us to empty the recent history without closing the debug window.

E o) Debug Window &S

CErl-Ale-D enables/disables the debug window

Mavigakion
v— /iy All
>— o action(picture)
«# Form picture_edit
«# Form picture_edit
v & action(edit_picture_Form)
o regueskt
ﬂ answer
>~ action{tags)

Type -
1 {i‘\, Warning QF5FileEngine:open: Mo File name specified
2 Debug Feeding widget "edit_picture_Form" with rule based validated serialization of answer
3 Debug Parse DataStructDescripktion ["{id={?}; caption{{main.caption}}; info{{main.inFo}}; image{{
4 |Dehug write data struct "id="; caption{AMD logo'}; info{'For manufacturers’}; image{/9j/4AAQ5

5 ;’3‘\, Warning set a dynamic property of PictureChooser "edit_picture_form.image" that is not predef

>

W

<[| 1< >

Debug w Refresh Clear

18

Draft Draft

Index

19

Wolframe Installation from Source

Draft Draft

Wolframe Installation from Source
Publication date Aug 29, 2014 version 0.0.3
Copyright © 2010 - 2014 Project Wolframe

Commercial Usage. Licensees holding valid Project Wolframe Commercial licenses may use this file in accordance with the Project
Wolframe Commercia License Agreement provided with the Software or, alternatively, in accordance with the terms contained in a written
agreement between the licensee and Project Wolframe.

GNU General Public License Usage. Alternatively, you can redistribute this file and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

Wolframe is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

Y ou should have received a copy of the GNU General Public License along with Wolframe. If not, see http://www.gnu.org/licenses/

If you have questions regarding the use of thisfile, please contact Project Wolframe.

http://www.gnu.org/licenses/

Draft Draft

Table of Contents

1. INStAllAtioN FrOM SOUICE ... ouieiiiiee e e e e e et e e e aeans 1
L1 SOUICE REIBASES ...ttt e ettt e e e et e et e aaeaees 1
1.2. BUilding 0N UNiX SYSTEMSoeeiiieiiiiiie ettt e e et e e et e e eene e eees 1

12,0, Prer@QUISITES ...ueeieie ettt ettt e e e 1
1.2.2. BasiC build iNSETUCHIONScveiiiiieieee e e e 2
1.2.3. GCC COMPIIEN ..o 3
1.2.4. clang COMPITEN ...ttt e e s 3
1.2.5. INtel COMPITEN ..eneeee et 4
1.2.6. Using cCaChe and diSICCcceuuuueiiiiiieiei e 4
1.2.7. Platform-specific build iNStrUCtioNScoouuiiiiiiiiiiiiii e 5
FrEEB O .ouiiiiitie e 5
NEIBSD .ot 5
OpeniNdiana 15188ccuuuiiiiiiiieeiei ettt 5
o = 100 O 5
LL2.8. BOOSE .. it e 6
Build your own version of BOOSEceeeitiiiiiiiiieeiiii et 6
RedHat, Fedora, CentOS, Scientific Linux and similar Linux distributions......... 7
RedHat/Centos/Scientific Linux 5 and similar Linux distributions............ 7
REAHEE 6evieeiiie e 7
Centog/Scientific Linux 6 and similar Linux distributions 7
RedHat/Centos/Scientific Linux 7 and similar Linux distributions........... 7
Fedora and similar Linux distributionscccccoviiiiiiiii i, 7
Debian, Ubuntu and similar Linux distributionsccccoeiiiiiiiiiieennnne. 7
(D1 o =T < TR 7
[o =" A 7
Ubuntu 10.04.1 LTS, UbUNtU 12.04ovvvniieiieeieeeeeeeee e 7
Ubuntu 13.10 and 14.04ooovninieii e 7
openSUSE, SLES and similar Linux distributionscoovveiiiiinieineeennn. 8
OPENSUSE 12.3, 13,1 .ouiiiiiiii it ee e e e e s 8
SLES 11 SPL, SP2 and SP3coviieiieieeeeee e 8
PN o | 10 PP 8
S = o T =Y 8
FIrEEBSD 10 ..ouiiiiiiiiiiie e 8
FreeBSD 8 ana O ..u.cvviiiiiiiii et 8
NEBSD .ttt 8
OpeniNdiana 15188ccuuuiiiiiit ettt 8
o = (£ O P 8
1.2.9. Secure SOCKEL Layer (SSL) ..evvuiieiiiieeeiii et 9
RedHat, Fedora, CentOS, Scientific Linux and similar Linux distributions........ 9
Debian, Ubuntu and similar Linux distributionscccoeeiiiiiiiiiiieinennee. 9
openSUSE, SLES and similar Linux distributionsccoevveiiiiinieinneeennn. 9
YN o 4| 010 PP 10
S = o T =Y PP 10
FrEEBSD ..ottt 10
NEBSD ..ot 10
OpeniNdiana 15188uuuieiiiiiieieii e 10
SOIAIIS 0 ot 10
1.2.10. SQLite database SUPPOITc.uuuiieieieeieii et 10
RedHat/Centos/Scientific Linux 5 and similar Linux distributions.................. 11
RedHat/Centos/Scientific Linux 6 and 7, Fedora and similar Linux
(o 11] 10 1o g N 11
Debian, Ubuntu and similar Linux distributionsccocevviiiiiiiiiiniineanss 11
openSUSE, SLES and similar Linux distributionscccooeviiiiiiineiins 11
YN o oI 010 PSP 11
S = o T =Y PR 11

XXii

Draft

Wolframe Installation from Source Draft

FIEEBSD ..oniieiiii e 11
N[0 1S T 11
OpeniNdiana 151a8covvniiiiiieiiieeie e 11
SOLAMNS 10 oviiitiii i 11
1.2.11. PostgreSQL database SUPPOITcc.uuiirnieiieeeieeeieeeeee e e e e e e e e eaaeeanaes 11
RedHat, Fedora, CentOS, Scientific Linux and similar Linux distributions...... 12
Debian, Ubuntu and similar Linux distributionscccoeevviiiiiiiiiniennnen, 12
openSUSE, SLES and similar Linux distributionsccooeeiiieiineinns 12
ATCHLINUX 11ttt e e e e et e e e e e eaaes 12
SlACKWEAIE ot 12
FrEEBSD 10 ...ieniiii i 13
FreeBSD 8 aN0 9 ...uivviiiii e 13
N[0 1S 13
OpeniNdiana 1518cevuuiiiiiieiiieee e e e e 14
SOLANS 10 ottt e 14
1.2.12. Oracle database SUPPOITcvveeiiieiie e e e e e e e e e e e e 14
RedHat, Fedora, CentOS, Scientific Linux and similar Linux distributions...... 14
Debian, Ubuntu and similar Linux distributionscccoeeveeiiiiiiiininnnnn. 15
openSUSE, SLES and similar Linux distributionsccccoeoiiiiiineiins 15
ATCHLINUX 11ttt e et e e e e e et e e e e s e eaaes 15
SlACKWAIE ..ieii et 15
FIrEEBSD ..ouiitiiii et 16
N[0 1S T 16
OpenINdiana 1518ceiviiiiiiieii e e e 16
SOLANS 10 ottt aa e 16
1.2.13. XML filtering support with libxml2 and libxsltc..ccooeiiiiiiiiiinnn, 16
RedHat/Centos/Scientific Linux 5 and similar Linux distributions 17
RedHat/Centos/Scientific Linux 6 and 7, Fedora and similar Linux
QIStTIDULIONS ...t ans 17
Debian, Ubuntu and similar Linux distributionscccoeevveiiiiiiiiiniinnnn. 17
openSUSE, SLES and similar Linux distributionsccooeviiviiiineiinnns 17
ATCHLINUX ovuiti ittt e e e e e e e e e e e e e e e eaaes 17
SlACKWAIE ..t 17
FIEEBSDietiiiii et 17
N[0 = 1S T 17
OpeniNdiana 151a8ccvvuiiiiiieiii e e e 17
SOLANS 10 vttt 17
1.2.14. XML filtering support with Textwolfcccoiiiiiiiiii e, 17
1.2.15. JSON filtering support With CISONcc.oviiiiiiiiiiiciiii e, 18
1.2.16. Scripting SUPPOrt With LUoeiiiiiii e 18
1.2.17. Scripting support with Python ..o 18
RedHat/Centos/Scientific Linux 5, 6 and 7 and similar Linux distributions....... 19
Fedora and similar Linux distributionscccccoveeiiiiiiiiiiii e, 19
Debian, Ubuntu and similar Linux distributionscccoeeviiiiiiiiiiineinnen. 19
openSUSE, SLES and similar Linux distributionsccoooeiiviiiieninns 19
ATCHLINUX 11uitiitee e e e e e e e e e e e e eaaes 19
SlACKWAIE ..ot e 19
FrEEBSD 10 ...iieniiii e 19
FreeBSD 8 aN0 9 ...uivveiiiii i 19
N[0 1S T 19
OpeniNdiana 151a8cvvvnieiiiieii e e e 19
SOLAMNS 10 vttt 20
1.2.18. Printing support with libhpdfccooiiii 20
RedHat/Centos/Scientific Linux, Fedoraand similar Linux distributions.......... 20
Debian, Ubuntu and similar Linux distributionscccoeevieiiiiiiiiinennnnn, 20
openSUSE, SLES and similar Linux distributionsccoooviiviiiieiinns 21
ATCHLINUX 11uiti ittt e e e e e e e e e e e e eaaes 21
SlACKWAIE .ot 21

XXiii

Draft

Wolframe Installation from Source Draft

FrEEBSD 10 ..ouiiiiiiiiii e 21
FreeBSD 8 ant O ...uivniiiiiiiiieee e 21
NEBSD .ot 21
OpeniNdiana 1518covvuiiiiiieiiiee e e e e e e 21
SOLANS 10 ottt 21
1.2.19. Image processing with Freelmagecccoveiiiiiiii i, 21
RedHat/Centos/Scientific Linux and similar Linux distributions 22
Fedora and similar Linux distributionsccccoveiiiiiiiiiiiiieceeieeen, 22
Debian, Ubuntu and similar Linux distributionscccoeevieeiiiiiiiiininnnen, 22
openSUSE, SLES and similar Linux distributionsccooeeiiiiiineiinns 22
ATCHLINUX 11uiti ittt e e e e e e e e e e e e s e eaaes 22
SlACKWAIE o.eeii e e 23
FrEEBSD 10 ..ouiiiiiiiiii i 23
FreeBSD 8 ant O ...uivniiiiiiiiii e 23
NEBSD .ot 23
OpeniNdiana 1518cvvvnieiiiieiiiee e ee e e e e e 23
SOLAMNS 10 vttt aaaas 23
1.2.20. ZIib @nd HDPNG .vvneeiniei e e 23
O TS U o o 1 A o L 24
RedHat/Centos/Scientific Linux, Fedoraand similar Linux distributions.......... 24
Fedora and similar Linux distributionscccccoveiiiiiiiiiiiiieeceeeeen, 24
Debian, Ubuntu and similar Linux distributionsccccoeeiieiiiiiiiiinennnnn. 24

(D o =10 < TP 24

DEDIAN 7 oot 24

Ubuntu 10.04.1 LTS, Ubuntu 12.04ccovvvrniiiieieeieeee e 25

Ubuntu 13.10 @nd 14.04 ...conivniiiiieeieee e 25
openSUSE, SLES and similar Linux distributionscccccociiieiineiinns 25
OPENSUSE 12.3, 13,1 .ouiiiiiiii e e e e 25

SLES 11 SP1, SP2 and SP3 .. vttt 25

ATCHLINUX o1uiti st e e e e e e e e et e e e e e e e eaaes 25
SlACKWAIE ot 25
FIrEEBSD 10 ..ouiiiiiiiiii e 25
FreeBSD 8 ant O ...uivniiiiiiiiiiei e 25
NEBSD .ottt e 25
OpeniNdiana 151a8cvvvuieiiieeei e e e e 25
SOLANS 10 ottt 26
1.2.22. Internationalization support With gettextccooeeviveiiiiiii i, 27
LinUX diStriBULIONSccvniiriiii e 27
FrEEBSD ..ottt 27
NEBSD .ot 27
OpenINdiana 151a8cvvvnieiiieeiiiee e e e e e e 27
SOLANS 10 ottt 27
1.2.23. Authentication support With PAMooiiiiiiii e 27
RedHat/Centos/Scientific Linux, Fedoraand similar Linux distributions.......... 28
Debian, Ubuntu and similar Linux distributionscccoeevviiviiiiinennnnn. 28
openSUSE, SLES and similar Linux distributionscccooeviiieiiieinns 28
ATCHLINUX 11uiti et e e e e e e e e e e e eaaes 28
SlACKWAIE .ot e 28
FrEEB SD ..u it 28
NEBSD .ot 28
OpeniNdiana 151a8cvvvnieiiiieii e e e 28
SOLAMNS 10 vttt 28
1.2.24. Authentication support With SASLcoiiiiiiii e, 28
RedHat/Centos/Scientific Linux, Fedoraand similar Linux distributions.......... 29
Debian, Ubuntu and similar Linux distributionscccoeevieiiiiiiiiinennnnn, 29
openSUSE, SLES and similar Linux distributionsccoooviiviiiieiinns 29
ATCHLINUX 11uiti ittt e e e e e e e e e e e e eaaes 29
SlACKWAIE .ot 29

XXiV

Draft

Wolframe Installation from Source Draft

FrEEBSD ..iuiiiii e it 29
NEEBSD ..ttt e e e 29
OpeniNdiana 151a8covvniiiiiieiiieeie e 29
0] = 00 O 30
1.2.25. Testing WOITIamecouuniiii i e e 30
1.2.26. Testing With EXPECEiiii i 30
RedHat/Centos/Scientific Linux, Fedoraand similar Linux distributions.......... 30
Debian, Ubuntu and similar Linux distributionsccooeeiiieiiieeiineennnn, 30
openSUSE, SLES and similar Linux distributionscccooeeiiiiiinciinns 30

N (o o T 1 31

S o = (T 31
FrEEBSD ..vuiiii e et 31
NEEBSD ..ttt aaa 31
OpeniNdiana 1518cevuuiiiiiieiiieee e e e e 31
0] = =00 O 31
1.2.27. Building the documentationccceeuiiiiiiniiii e 31
RedHat/Centos/Scientific Linux and similar Linux distributions.................... 31
Fedora and similar Linux distributionsccooeeiiiiiiiiicii e, 31
Debian, Ubuntu and similar Linux distributionscccoeeiiiiiiineiineennnn, 32
openSUSE, SLES and similar Linux distributionscccoeviiieiineinns 32

N o o T 1 32

S o = (T 32
FrEEBSD ..vuiiiiiieiit ettt 32
NEEBSD ..ttt aaa 32
1.2.28. INSEAGHONiiiicei e 32
1.2.29. Manual dependency generationccceueeiuieiiineeiiie e e e e e e eaenns 33
1.2.30. Creating source tarballsccoouiiiiiii i 33
1.2.31. Building the WolfClientcooooiiiiiiii e, 33
RedHat/Centos/Scientific Linux 5 and similar Linux distributions 34
RedHat/Centos/Scientific Linux 6 and 7 or similar Linux distributions............ 34
Fedora 19 and 20 and similar diStributionsccoooeiiieiineiin e, 34

(D)= o= 1 1 =0 Lo A 34
Ubuntu 10.04.1 @and 12.04ovvuiiiiieeiieec e e 34
Ubuntu 13.10 and 14.04cooeiieeiie e 35
openSUSE 12.3, SLES and similar Linux distributionscccocccvneeenn... 35
OPENSUSE 131 ... 35

N o o 1 35

S o = (P 35
FreeBSD 8 ana 9 ...covvveiiiiiiie e 35
FrEEBSD 10 .iiiiiiiiiiieeeiieei ettt e e e e e e aaaae 35
NEEBSD ..ttt e e e e e 35
OpenINdiana 151a8cevvuieiiiieiiieie e 36
0] = 00 O 36

1.3. Building on Windows systems (the NMAKE Way)ccocoviviiiiiiiiiiiciineee e, 36
I B = == (1K=] (=P 37
1.3.2. BasiC build iNSLIUCHIONSccvuiiiiieiiiiee e ee e e e e e e 38
1.3.3. Using ccache and diSICCovvvuiiiiieie e e 39
I 0 T T To 1 SRR 39
Use prebuild version of BOOSEoceviieiiiiiiiiieci e 39
Build your own version of BOOStcoevuiiiiiiiiiie e 39
1.3.5. Secure SOCKEL Layer (SSL) ..vuvivniiiiieiii e 40
Use prebuild version of OpenSSLcovviiiiiiiiiiiiecc e 40
Build your own version of OPenSSLcc.vvvviiiiiiiiiecn e 40
1.3.6. SQLIite database SUPPOITcvvneiiiieeei e e e e e e 41
1.3.7. PostgreSQL database SUPPOITcvvvniiiiicii e e e e 41
Use prebuild version of POSIGreSQLocvvveiiiieiiecei e 42
Build your own version of POStQreSQLccuoveiiiieiiiiiiiiieei e, 42
1.3.8. Oracle datahase SUPPOITcovuiiiiiii e e e e e 43

XXV

Draft Wolframe Installation from Source Draft
1.3.9. XML filtering support with libxml2 and libxsltcccooeiiiiiiiiiiinn. 44
Use prebuild versions of libxml2 and libxsltcoooiiiiiiii 44

Build your own version of LIbXML2coooiiiiiiiiiciiiiec e, 44
Build your own version of LIbXSLTccoviiiiiiiiiine e, 46
1.3.10. XML filtering support with Textwolfcoooeiiiiiiiii e, 47
1.3.11. JSON filtering support With CISONccoiiiiiiiiiiiciiir e 47
1.3.12. Scripting SUPPOrt With LUcocuiiiiiiii e e 47
1.3.13. Scripting support with Pythoncoooiiiiiii e 47
Use prebuild version of Python ..o, 47
Build you own version of PythOnccocoiiiiiiiiiin e 48
1.3.14. Printing support with libhpdfcooiiiii 48
1.3.15. Image processing with Freelmageccooveviiieiiii i, 48
1.3.16. ZIib @and HBPNG .vvneeinieii e 49
1.3.27. SUPPOIT FOr TCU oeieieii e e e 49
Use prebuild version of TCUccouuiiiiiiiiiiece e 49
Build you own version of ICUccoceiieiiiiiiiiiiccie e, 49
1.3.18. Testing WOITIamMecivviiiiee e e e e 50
1.3.19. Testing With EXPECL ...c.vuiiiiiiii e 50
1.3.20. Building the documentationccocouieiiiieiiii i 51
1.3.21. Building the WolfClientcooiiiiiiiii e 51

XXVi

Draft

Draft

Chapter 1. Installation from source

This section describes how to build the Wolframe application from the source code.

1.1. Source Releases

Tarballs with release source code are available from SourceForce in the directories

http://sourceforge.net/projects'wol frame/files'wol frame/

respectively
http://sourceforge.net/projects/wol frame/files/wolfclient/.

The wol franme-0.0.3 .tar.gz contains the Wolframe server, the modules and 3rdParty
software needed to build the server.

Thewol fclient-0.0.4 .tar. gz contains the Wolframe client implementing the graphical
user interface.

1.2. Building on Unix systems

1.2.1.

Prerequisites

For building Wolframe on Unix systems you need at |east the following software:
* A recent C/C++ compiler, the following ones are known to work:
e gcc 4.1.x or newer, http://gcc.gnu.org
 clang 3.4 or newer, http://clang.llvm.org
 Intel Compiler ICC 14.0 or newer, http://software.intel.com/en-us/c-compilers
* GNU make 3.81 or newer (but preferably 3.82 or newer) from https://www.gnu.org/software/make/
» Boost 1.48.0 or newer from http://www.boost.org
Depending on the features you want to use you also may need the following software;
» The OpenSSL library 0.9.7 or newer, for encryption and authentication, http://www.openssl.org

» The Sglite database library, version 3.5.0 or newer, for storing user data and authentication datain
a Sqglite database, http://sglite.org

» The PostgreSQL database client library, version 8.1 or newer, for storing user data and
authentication data in a PostgreSQL database, http://postgresql.org

» The Oracle OCI client library, version 11.2 or newer, for storing user data and authentication data
in an Oracle database, http://www.oracle.com

e Thelibxml2 library, version 2.7.6 or newer, for filtering XML data, http://xmlsoft.org/
» Thelibxdt library, version 1.1.26 or newer, for the transformation of XML data, http://xmlsoft.org/
» Python 3, version 3.3.0 or newer, for writting applications in Python, https://www.python.org

» Thelibhpdf library, version 2.2.1 or newer, for PDF generation and printing, http://libharu.org/

http://sourceforge.net/projects/wolframe/files/wolframe/
http://sourceforge.net/projects/wolframe/files/wolfclient/
http://gcc.gnu.org
http://clang.llvm.org
http://software.intel.com/en-us/c-compilers
https://www.gnu.org/software/make/
http://www.boost.org
http://www.openssl.org
http://sqlite.org
http://postgresql.org
http://www.oracle.com
http://xmlsoft.org/
http://xmlsoft.org/
https://www.python.org
http://libharu.org/

Draft

Installation from source Draft

1.2.2.

e The Freelmage package, version 3.154 or newer, for image manipulation, http://
freeimage.sourceforge.net

» The ICU library, version 3.5 or newer, for text normalization and conversion, http://site.icu-
project.org [http://site.icu-project.org/]

» A PAM library, for instance Linux PAM, version 1.0.4 or newer, for authentication viaPAM, http://
www.linux-pam.org [http://www.linux-pam.org/]

* The Cyrus SASL library, version 2.1.22 or newer, for authentication via SASL, http:/
cyrusimap.org/ [http://cyrusimap.org]

For testing the Wolframe software you need:

» Expect 5.40 or newer, for running the Expect tests, http://expect.sourceforge.net/
* A working telnet

» A PostgreSQL or Oracle database when you want to run the database tests

For building the documentation and manpages you need:

» Doxygen for developer documentation, http://www.doxygen.org

» Docbook 4.5 or newer and the XSL toolchain, http://www.docbook.org

» The FOP PDF generator for documentation in PDF format, http://xmlgraphics.apache.org/fop/
» Diafor conversion of SV G images, http://live.gnome.org/Dia

For building the wolfclient you need:

* Qt4.6.xor later, or Qt 5, http://qt-project.org/

» For secure communication between the wolfclient and the Wolframe server you need the OpenSSL
library 0.9.7 or newer, http://www.openssl.org

Basic build instructions

Wolframeis built and installed by simply calling:

make
make install

The makefiles understand the standard GNU targets like ‘clean’, 'distclean’, 'test’, ‘install’, 'uninstall’,
etc. Also the standard installation variables 'DESTDIR' and 'prefix' are understood. The whole list of
options can be seen with:

make hel p

There is no configure. Porting to platforms and distributions is done in the makefiles. For most
platforms we provide reasonable default valuesin makef i | es/ gmake/ pl at f or m nk.

Optional featuresare enabled by using 'WITH_XXX' variableswhen calling make, e. g. to enable SSL
support you call make like this:

http://freeimage.sourceforge.net
http://freeimage.sourceforge.net
http://site.icu-project.org/
http://site.icu-project.org/
http://site.icu-project.org/
http://www.linux-pam.org/
http://www.linux-pam.org/
http://www.linux-pam.org/
http://cyrusimap.org
http://cyrusimap.org
http://cyrusimap.org
http://expect.sourceforge.net/
http://www.doxygen.org
http://www.docbook.org
http://xmlgraphics.apache.org/fop/
http://live.gnome.org/Dia
http://qt-project.org/
http://www.openssl.org

Draft

Installation from source Draft

1.2.3.

1.2.4.

make W TH_SSL=1

Additional variables can be set when 3rdParty software is not in the standard location, for instance:
make BOOST_DI R=/usr/| ocal / boost-1.55.0

Y ou can check how your software will be build with:
make config

If you get a’NOT SUPPLIED ON THIS PLATFORM' you have to provide the variables explicitly as
mentioned above in the example with 'BOOST_DIR'.

A complete build may look like this:

make W TH SSL=1 W TH EXPECT=1 W TH PAM=1 W TH SASL=1 \

W TH_SYSTEM SQLI TE3=1 W TH PGSQ.=1 W TH _ORACLE=1 \

W TH LUA=1 W TH LI BXM.2=1 W TH LI BXSLT=1 \

W TH_LOCAL_LI BHPDF=1 W TH | CU=1 W TH_LOCAL_FREEI MAGE=1 \
W TH_PYTHON=1 W TH CISON=1 W TH TEXTWOLF=1 \

CC=gcc CXX=g++ CCFLAGS='-Werror' CXXFLAGS='-Werror' \
clean all test install

GCC compiler

Compilation with GNU gcc is the default on all Unix platforms. It corresponds to the call:
make CC=gcc CXX=g++

Per default all reasonable warnings are enabled. To add your own flags you can set 'CFLAGS or
'CXXFLAGS respectively for instance to turn compiler warnings into fatal errors with:

make CFLAGS='-Werror' CXXFLAGS='-Werror'
or

make CFLAGS='-g - Q0" CXXFLAGS='-g -Q0'
to turn off optimization and to enable debug information.

Certain embedded 3rdParty software may choose to have it's own flags for compilation, you can't
override those in the make invocation.

clang compiler

Compilation with clang is possible, only set the correct compiler variables:

Draft Installation from source Draft

make CC=cl ang CXX=cl ang++

Also hereyou can set 'CFLAGS and 'CXXFLAGS at will.

1.2.5. Intel compiler

Compilation with the Intel C compiler is done with:

source /opt/intel/bin/iccvars.csh intel 64
make CC=i cc CXX=i cpc

(where '/opt/intel/binficc' is the location of the Intel compiler).
Also hereyou can set 'CFLAGS and 'CXXFLAGS at will.
When running the tests or any binaries you have to make sure that 'LD_LIBRARY_PATH' is set
correctly (the exampleisfor csh/tcsh, Intel 64-bit):
setenv LD LI BRARY_PATH $PROD DI R/ lib/intel 64

1.2.6. Using ccache and distcc

Ccache (http://ccache.samba.org/) and DistCC (https.//code.google.com/p/distcc/) can be used to
cache respectively distribute the compilation of Wolframe.
Call make asfollows:
make CC='ccache gcc' CXX='ccache g++'
or
make CC='distcc gcc' CXX='distcc g++'

If you want to use ccache and distcc in parallel, use the following commands:

export DI STCC HOSTS=' serverl server2 server3'
export CCACHE PREFI X=di stcc
make CC='ccache gcc' CXX='ccache g++'

When using 'clang’ with ‘ccache’ set the following environment variable too (on Linux only, on
FreeBSD 10 the ccache with clang combination runs out of the box):

export CCACHE CPP2=1

The same applies for some versions of ‘icc' (for instance 14.0.2 20140120). Y ou get spurious errors
when you don't set 'CCACHE_CPP2'!

http://ccache.samba.org/
https://code.google.com/p/distcc/

Draft Installation from source Draft

Note:: distcc is not very helpfull as most timeis spent currently in dependency calculation and in the
C++ preprocessing. If you want to use the pump mode of distcc you will experience alot of errorsin
the pre-computed header files mainly due to boost.

1.2.7. Platform-specific build instructions
FreeBSD

Y ou need GNU make, BSD make doesn't work. Y ou have to install the 'gmake’ package.
FreeBSD 8, 9 and 10 are supported.

Note: As of FreeBSD 10 it's recommended to use the 'pkgng' package management tool to install
binary prerequsites.

Note: Since FreeBSD 10 clang is the default compiler and no longer gcc.

NetBSD

Y ou need GNU make, BSD make doesn't work. Y ou have to install the ‘gmake’ package.
NetBSD 6 is supported, NetBSD 5 not.

Packages areinstalled with 'pkgin' into the directory / usr / pkg. Makesure/ usr / pkg/ bi nispart
of your PATH.

Openindiana 151a8

The officia gcc is too old to build Boost. The Forte compiler is not free and has big problems to
compile modern C++ code. So we must use the CSW/gcc/C++ toolchain for Wolframe.

Install the CSW toolchain (http://www.opencsw.org) and basic development tools:

pkgadd -d http://get.opencsw. org/ now
pkgutil --install CSWjcc4core CSWjcc4g++ CSWynmake

Y ou aso need some system files:

pkg install pkg:/systenf header

pkg install pkg:/devel oper/library/lint

pkg install systenilibrary/ math/header-nmath
Make sure/ opt / csw/ bi n ispart of your PATH.

Install packages with 'pkgutil --install’.
Solaris 10

We only build for SPARC and Solaris 10 currently.

Y ou may havetoinstall a'SFWgtar' or 'CSWgtar' in order to unpack the sources. Make sure to rename
them to 'gtar' to avoid collisions with the standard 'tar'!

The official gec is too old to build Boost. The Forte compiler is not free and has big problems to
compile modern C++ code. So we must use the CSW/gcc/C++ toolchain for Wolframe.

http://www.opencsw.org

Draft Installation from source Draft

Install the CSW toolchain (http://www.opencsw.org) and basic development tools:

pkgadd -d http://get.opencsw. or g/ now
pkgutil --install CSWjcc4core CSWycc4g++ CSWynmake

Make sure the build environment is always set as follows:

PATH=/ opt / csw/ bi n: /usr/ccs/ bin:/usr/bin:/bin:/opt/csw sbin:/usr/sbhin:/shin
export PATH

Install official packages with 'pkgadd -d' and CSW packages with 'pkgutil --install'.

Building Wolframe is more complex as on other platforms, so we provide this working example
invocation of make:

LD RUN _PATH=/opt/csw | ib:/opt/csw postgresqgl/lib \
OPENSSL_DI R=/ opt / csw PGSQL_DI R=/ opt/ csw/ post gresql \

LI BLT_DI R=/ usr BOOST_DI R=/ opt/ csw boost-1.55.0 \

W TH_EXPECT=1 W TH_SSL=1 W TH_SYSTEM SQLI TE3=1 W TH PGSQL=1 W TH_LUA=1 \

W TH_LI BXM_L2=1 W TH_LI BXSLT=1 W TH_PAM=1 W TH_SASL=1 W TH_LOCAL_LI BHPDF=1 \
WTH ICU=1 I CU DI R=/opt/cswicudc-49.1.2 \

W TH_LOCAL_FREEI VAGE=1 \

W TH_PYTHON=1 \

gmake \

CC=gcc CXX=g++ CFLAGS=-ntpu=v9 CXXFLAGS=- ntpu=v9

1.2.8. Boost

Boost (http://www.boost.org) is the only library which is absolutely required in order to build
Wolframe.

Build your own version of Boost

The following Boost libraries are required for building Wolframe:

./ bootstrap.sh --prefix=/usr/local/boost-1.55.0 \
--with-libraries=thread,fil esystem system program options, date_time
./ bjaminstall

If you want to build the ICU normalization module (WITH_ICU=1) you will have to build 'boost-
locale’ with ICU support and you have to enable the 'regex’ and the 'locale€' boost libraries too:

./ bootstrap.sh --prefix=/usr/local/boost-1.55.0 \
--with-libraries=thread,fil esystem system program options, date_ti e, regex, | oc
./ bjaminstall

The location of the Boost library can be set when building Wolframe as follows:

make BOOST_DI R=/usr/| ocal / boost-1.55.0

http://www.opencsw.org
http://www.boost.org

Draft Installation from source Draft

RedHat, Fedora, CentOS, Scientific Linux and similar Linux
distributions

RedHat/Centos/Scientific Linux 5 and similar Linux distributions
The official Boost packages are not recent enough. Build your own Boost version here.
If you want ICU support you will also need the 'libicu-devel' package.
RedHat 6
The official Boost packages are not recent enough. Build your own Boost version here.
If you want |CU support you will also need the 'libicu-devel' package.
We currently build the officia packages without ICU support. The reason is that there
is no 'libicu-devel' package available for RHEL6 on OBS (see http://permalink.gmane.org/

gmane.linux.suse.opensuse.buildservice/17779).

Get a Redhat developer license to get the 'libicu-devel' package or build your own libicu library and
build your own Boost library with boost-locale and |CU support.

Centos/Scientific Linux 6 and similar Linux distributions

The official Boost packages are not recent enough. Build your own Boost version here.

If you want ICU support you will also need the 'libicu-devel' package.
RedHat/Centos/Scientific Linux 7 and similar Linux distributions

Y ou need the 'boost-devel' package. This package contains also the boost-locale and ICU backend.
Fedora and similar Linux distributions

Y ou need the 'boost-devel’ package. This package contains also the boost-locale and ICU backend.
Debian, Ubuntu and similar Linux distributions

Debian 6
The official Boost packages are not recent enough. Build your own Boost version here.
Debian 7

Y ou need the following packages: 'libboost-dev', 'libboost-program-options-dev', 'libboost-fil esystem-
dev', 'libboost-thread-dev', 'libboost-random-dev'.

If you want ICU support you will aso need the 'libboost-locale-dev' package.
Ubuntu 10.04.1 LTS, Ubuntu 12.04

The official Boost packages are not recent enough. Build your own Boost version here.
Ubuntu 13.10 and 14.04

Y ou need the following packages: 'libboost-dev', 'libboost-program-options-dev', 'libboost-fil esystem-
dev', 'libboost-thread-dev', 'libboost-random-dev'.

If you want ICU support you will also need the 'libboost-locale-dev' package.

http://permalink.gmane.org/gmane.linux.suse.opensuse.buildservice/17779
http://permalink.gmane.org/gmane.linux.suse.opensuse.buildservice/17779

Draft Installation from source Draft

openSUSE, SLES and similar Linux distributions
OpenSuSE 12.3, 13.1

Y ou need the 'boost-devel’ package.
SLES 11 SP1, SP2 and SP3

The official Boost packages are not recent enough. Build your own Boost version here.
ArchLinux

Y ou need the 'boost’ and 'boost-libs' packages. The official Boost packages contains support for boost-
locale and the ICU backend.

Slackware

Y ou need the 'boost' package. This packageis part of the'l' package series. The official Boost package
contains support for boost-locale and the ICU backend.

FreeBSD 10

Y ou need the 'boost-libs' package.

FreeBSD 8 and 9

Y ou need the 'boost-libs' package.
Some boost header files are broken when compiling with gcc, for patches see packagi ng/

pat ches/ Fr eeBSD. They can be applied to the ports directory before rebuilding Boost or directly
to theinstalled header filesin/ usr /| ocal /i ncl ude/ boost .

NetBSD

Y ou need the 'boost-libs' package.

Openindiana 151a8

We don't use the CSW boost packages.
Aslong you don't need ICU support you can build Boost as follows:
First apply al patchesfound in packagi ng/ pat ches/ Sol ari s/ 1. 55. 0.

Then build boost with:

./ boot strap.sh --prefix=/opt/csw boost-1.55.0 \
--with-libraries=thread,fil esystem system program options, date_timnme
./b2 -a -d2 install

Note: The only tested version for now is version 1.55.0! Other versions of Boost may work or not
work..

Solaris 10

We don't use the CSW boost packages.

Draft Installation from source Draft

Aslong you don't need ICU support you can build Boost as follows:

Patch the correct architecture (V8 is not really supported, but V8 is aso very old) and gcc versionin
tool s/ buil d/v2/user-config.jam

using gcc @ 4.8.2 @ g++ : <conpil eflags>-ncpu=v9 ;
Then build boost with:

./ bootstrap.sh --prefix=/opt/csw boost-1.55.0 \
--with-libraries=thread,fil esystem system program options, date_time
./b2 -a -d2 install

Note: The only tested version for now is version 1.55.0! Other versions of Boost may work or not:

Do not use boost 1.48.0, it breaks in the threading header files with newer gcc versions (4.8.x) and
runs only with old gcc versions (4.6.x).

Do not use boost 1.49.0, it has a missing function ‘fchmodat' causing building of libboost_filesystem
tofail!

Boost 1.50.0 thru 1.54.0 have never been tested with Wolframe, so don't use those!

1.2.9. Secure Socket Layer (SSL)

The Wolframe protocol can be secured with SSL. Y ou have to specify the following when building:
make W TH_SSL=1

Currently only OpenSSL (http://www.openssl.org) is supported. The location of the library can be
overloaded with:

make W TH SSL=1 OPENSSL_DI R=/ usr/| ocal / openssl -1. 0. 1g

Use the most recent version of the OpenSSL library available for you platform.

Note: Be carefull to usethe 0.9.8, 1.0.0 or 1.0.1g or newer versions, but not the versions 1.0.1 through
1.0.1f (Heartbleed bug)!

RedHat, Fedora, CentOS, Scientific Linux and similar Linux
distributions

Y ou need the 'openssl-devel' package.
Debian, Ubuntu and similar Linux distributions
Y ou need the 'libssl-dev' package.

openSUSE, SLES and similar Linux distributions

Y ou need the 'openssl-devel’ package.

http://www.openssl.org

Draft Installation from source Draft

ArchLinux

Y ou need the ‘openssl’ package.
Slackware

Y ou need the 'openssl’ package. This package is part of the 'n' package series.
FreeBSD

FreeBSD contains all necessary SSL libraries per default, you don't have to install any special
packages.

NetBSD
NetBSD containsall necessary SSL libraries per default, you don't havetoinstall any special packages.

Openindiana 151a8

Y ou need the 'CSWIibssl-dev' package.

Solaris 10

Y ou need the 'libssl_dev' package.

1.2.10. SQLite database support

Wolframe can use an Sqglite3 database (http://sglite.org) as backend for data storage and for
authentication and autorization.
Y ou enable the building of aloadable Sqlite3 database module with:

make W TH_SYSTEM SQLI TE3=1

If you don't have a recent Sglite version on your system you can also build the module against the
embedded version:

make W TH LOCAL_SQLI TE3=1
Thelocation of the Sglite library can be overloaded with:

make W TH SYSTEM SQLI TE3=1 SQLI TE3_DI R=/usr/local /sqlite-3.4.3
Y ou can aso override all compilation and linking flags of Sglite separately:

make W TH_SYSTEM SQ.I TE3=1 \
SQLI TE3_| NCLUDE DI R=/ usr/local /sqlite-3.4.3/include \
SQLITE3 LIB DIR= /usr/local/sqlite-3.4.3/1ib\
SQLI TE3_LIBS=-1sqlite3

When building with 'WITH_SYSTEM_SQLITES3' it is enough to install the correct development
library.

10

http://sqlite.org

Draft Installation from source Draft

RedHat/Centos/Scientific Linux 5 and similar Linux distributions

The official Sqglite package is too old, use the embedded version of Sqlite with
'‘WITH_SYSTEM_SQLITE3=1".

RedHat/Centos/Scientific Linux 6 and 7, Fedora and similar Linux
distributions

Y ou need the 'sglite-devel’ package.

Debian, Ubuntu and similar Linux distributions

Y ou need the 'libsglite3-dev' package.

For running the Sglite3 database tests you also need the 'sglite3' package.
openSUSE, SLES and similar Linux distributions

Y ou need the 'sglite3-devel' package.

For running the Sqlite3 database tests you also need the 'sglite3' package.
ArchLinux

Y ou need the 'sglite’ package.
Slackware

Y ou need the 'sqlite’ package. This packageis part of the ‘ap' package series.
FreeBSD

Y ou need the 'sglite3' package.
NetBSD

Y ou need the 'sqlite3' package.
Openindiana 151a8

Y ou need the 'CSWIibsglite3-0' and the 'CSWIibsqglite3-dev' packages.

For running the Sqlite3 database tests you also need the 'CSWsgllite3' package.
Solaris 10

Y ou need the 'CSWIibsglite3-0' and the 'CSWIibsglite3-dev' packages.

For running the Sqlite3 database tests you also need the 'CSWsgllite3' package.
1.2.11. PostgreSQL database support

Wolframe can use a PostgreSQL database (http://postgresql.org) as backend for data storage and for
authentication and autorization.

Y ou enabl e the building of aloadable PostgreSQL database module with:;

make W TH_PGSQL=1

11

http://postgresql.org

Draft Installation from source Draft

The location of the PostgreSQL library can be overloaded with:
make W TH PGSQ.=1 PGSQ._DI R=/usr/| ocal / postgresql-9.1.3
Y ou can also override all compilation and linking flags of PostgreSQL separately:

make W TH PGSQ.=1 \
PGSQ__I NCLUDE_DI R=/ usr/ | ocal / post gresqgl -9. 1. 3/i ncl ude \
PGSQ._LIB DI R=/usr/local /postgresql-9.1.3/1ib \
PGSQL_LI BS=-1 pq

RedHat, Fedora, CentOS, Scientific Linux and similar Linux
distributions

Y ou need the 'postgresgl-devel' package.

For Centos/RHEL/SciLi 5 you can choose between the 'postgresgl-devel'package (which is version
8.1) or the 'postgresql84-devel' package. The 8.4 version is recommended over 8.1.

For running the Postgresgl tests you need a fully functional 'postgresgl-server' with a db user
‘wolfusr' (password: ‘wolfpwd’) owning a database called ‘wolframe'.

Setting up atest user in PostgreSQL on version 7 of Centos/RHEL /SciLi and Fedora is done with:

post gresql -setup initdb
systentt| start postgresql.service
systentt!| enabl e postgresqgl.service

change the authentication method from ‘ident' to 'md5' in pg_hba. conf .

Debian, Ubuntu and similar Linux distributions
Y ou need the 'libpg-dev' package.
For running the PostgreSQL database tests you a so need the 'postgresqgl-client' package.
Y ou aso need afully functional PostgreSQL server, package 'postgresql’.
openSUSE, SLES and similar Linux distributions
Y ou need the 'postgresgl-devel' package.
ArchLinux
Y ou need the 'postgresgl-libs’ package.

If you want to test you also have to set up the PostgreSQL server which comes in the 'postgresql’
package.

Slackware

A PostgreSQL package is not available on Slackware, build your own one with:;

12

Draft Installation from source Draft

./lconfigure --prefix=/usr/local/pgsq

make

make install

groupadd -g 990 postgres

useradd -g postgres -u 990 postgres

nmkdir /usr/|ocal/pgsql/var

chown -R postgres:users /usr/local/pgsql/var
Su postgres

fusr/local/pgsqgl/bin/initdb -D /usr/|ocal/pgsql/var
exit

cat > /etc/rc.d/rc. postgresq

#1/bin/sh

case "$1" in
start)
su -1 postgres -s /bin/sh -c "/usr/local/pgsqgl/bin/pg_ctl -D/usr/local/pgs
st op)
kill "ps -efa | grep postmaster | grep -v grep | awk '{print $2}'°
*)
echo $"Usage: $0 {start]|stop}”
exit 1
esac
exit O
(ctrl-D)

chnmod 0775 /etc/rc.d/rc. postgresql
usermod -d /usr/local/pgsql postgres

Compile Wolframe now with:

make W TH _PGSQL=1 \
PGSQL_DI R=/usr /| ocal / pgsql

Alternatively you can of course also build the 'postgresql’ package with the help of SlackBuilds.

FreeBSD 10

Y ou need the "postgresgl 93-client' package.

For testing you also need the 'postgresgl93-server' package.

FreeBSD 8 and 9

Y ou need the "postgresgl 92-client' package.

For testing you also need the 'postgresgl 92-server' package.
NetBSD

Y ou need the 'postgresgl 92-client' package.

For testing you also need the 'postgresgl 92-server' package.

13

Draft Installation from source Draft

Openindiana 151a8
Y ou need the 'CSWpostgresql-dev' package.

For testing you also need the 'CSWpostgresql91-server' package.
Solaris 10

Y ou need the 'CSWpostgresgl-dev' package.

For testing you also need the 'CSWpostgresql91-server' package.

1.2.12. Oracle database support

Wolframe can use a Oracle database (http://www.oracle.com) as backend for data storage and for
authentication and autorization.

Import note: Make sure you have all the licenses to develop with Oracle and to install an Oracle
database! The Wolframe team doesn't take any responsability if licenses are violated!

Y ou enable the building of aloadable Oracle database module with:

make W TH ORACLE=1
Thelocation of the Oracle instantclient library can be overloaded with:

make W TH ORACLE=1 ORACLE DI R=/opt/oracle/instantclient_ 11 2
Y ou can aso override all compilation and linking flags of Oracle separately:

make W TH_ORACLE=1 \
ORACLE | NCLUDE DI R=/usr/lib/oracle/ 11 2/client64 \
ORACLE LIB DI R=/usr/libl/oracle/11 2/client64 \
ORACLE LI BS=-1cl ntsh

If you want to run the tests for Oracle you'll have to set up an Oracle database. Then install the
'wolframe' database and the 'wolfusr' database user. Sgl example files can be found in contri b/
dat abase/ or acl e.

RedHat, Fedora, CentOS, Scientific Linux and similar Linux
distributions

For building the Oracle database module you have to download the
RPM packages oracl e-instantclient12. 1-basic-12.1.0.1.0-1.i386.rpm and
oracle-instantclient12.1-devel-12.1.0.1.0-1.i386.rpm You can of course
also install the zipfiles and install those.

From the system repositories you'll need the 'libaio' package.

If you want to use the 'sglplus command line tool for manual testing you also have to install
the packageor acl e-i nstantclient12. 1-sql pl us-12.1.0. 1. 0-1.i 386. rpmIfyou
want a history in sqlplus it's highly recommended that you install a command line history wrapper
like for instance 'rlwrap'.

14

http://www.oracle.com

Draft Installation from source Draft

Debian, Ubuntu and similar Linux distributions

For building the Oracle database module you have to download the
RPM packages oracl e-instantclient12. 1-basic-12.1.0.1.0-1.i386.rpm and
oracle-instantclient12.1-devel -12.1.0.1.0-1.i386.rpm

To install those RPM files you'll need the ‘alien’ tool. Y ou can of course aso install the zipfiles and
install those.

From the system repositories you'll need the 'libaiol' package.

If you want to use the 'sglplus command line tool for manual testing you also have to install
the package or acl e-i nstantclient12. 1-sql pl us-12.1.0.1.0-1.i386.rpmlIfyou
want a history in sglplus it's highly recommended that you install a command line history wrapper
like for instance 'rlwrap'.

openSUSE, SLES and similar Linux distributions

For building the Oracle database module you have to download the
RPM packages oracl e-instantclient12.1-basic-12.1.0.1.0-1.i386.rpm and
oracle-instantclientl12.1-devel-12.1.0.1.0-1.i386.rpm You can of course
aso install the zipfiles and install those.

From the system repositories you'll need the 'libaiol' package.

If you want to use the 'sglplus command line tool for manual testing you aso have to install
the package or acl e-i nstantclient12. 1-sql pl us-12.1.0. 1. 0-1.i 386. rpm If you
want a history in sglplus it's highly recommended that you install a command line history wrapper
like for instance 'rlwrap'.

ArchLinux
Y ou need the two packages 'oracle-instantclient-basic' and 'oracle-instantclient-sdk'.

Have a look at https://wiki.archlinux.org/index.php/Oracle client on how to install the Oracle
packages. Basically you have two options: either you use the 'oracle’ pacman repository or you
download the Oracle packages by hand and run the build scripts from AUR.

If you want to use the 'sglplus command line tool for manual testing you aso have to install the
package 'oracle-instantclient-sglplus. If you want a history in sglplus it's highly recommended that
you install acommand line history wrapper like for instance 'rlwrap'.

Slackware

Simply download the zipfiles and install them to adirectory, let's say 'fopt/oracle/instantclient_ 12 1"
nkdir -p /opt/oracle
cd /opt/oracle

unzip instantclient-basic-linux.x64-12.1.0.1.0.zip
unzi p instantclient-sdk-1inux.x64-12.1.0.1.0.zip

Add thefollowing lineto/ et ¢/ | d. so. conf and reload the cached shared libraries:

echo "/opt/oracle/instantclient 12 1" >> /etc/ld. so. conf
| dconfig

15

https://wiki.archlinux.org/index.php/Oracle_client

Draft Installation from source Draft

Call 'make' with:
make W TH ORACLE=1 ORACLE DI R=/opt/oracle/instantclient_ 12 1

FreeBSD

There are no plans for an Oracle module on FreeBSD.

NetBSD

There are no plans for an Oracle module on NetBSD.

Openindiana 151a8

There are no plans for an Oracle module on Openlndiana

Solaris 10

For building the Oracle database module you need the two packages 'oracle-instantclient-basic',
‘oracle-instantclient-sdk' (both 11.2 and 12.1 are ok, 12.1 needs a higher patchlevel of the SUNW C
library though).

Unpack the ZIPs for instance to ‘/opt/oraclef/instantclient 11 2' and build set ORACLE DIR
accordingly (together with WITH_ORACLE=1).

1.2.13. XML filtering support with libxml2 and libxslt

Wolframe can use libxml2 and libxslt (http://xmlsoft.org/) for filtering and the conversion of XML
data

Y ou can build only filtering with libxml2. But if you enable libxslt filtering you also have to enable
libxml2 filtering.

Y ou enable the building of aloadable libxml2/libxdlt filtering module with:
make W TH LI BXML.2=1 W TH LI BXSLT=1
The location of those two libraries can be overloaded with:

make W TH LI BXM.2=1 W TH_LI BXSLT=1 \
LI BXML2_DI R=/ usr/ 1 ocal /i bxm 2-2.9.1 \
LI BXSLT_DI R=/usr/l ocal /i bxslt-1.1.28

Y ou can aso override all compilation and linking flags of libxml2 and libxslt separately:

make W TH LI BXML2=1 W TH_LI BXSLT=1 \
LI BXML2_|I NCLUDE DI R=/usr/local /| ibxm 2-2.9.1/i ncl ude \
LI BXM.2_LIB DIR=/usr/local/libxm2-2.9.1/1ib \
LI BXML2_LI BS=-1xm 2 \
LI BXSLT I NCLUDE DI R=/usr/local /libxslt-1.1.28/include \
LI BXSLT_LIB DIR=/usr/local/libxslt-1.1.28/1ib \
LI BXSLT_LI BS=-1 xsl t

16

http://xmlsoft.org/

Draft Installation from source Draft

RedHat/Centos/Scientific Linux 5 and similar Linux distributions

The official libxml2 and libxslt package is too old, compile your own versions. Make sure your own
libxdlt version uses the libxml2 version you compiled and not the system one!

If you don't need working iconv support for non-UTF8 character sets you may also try to use the
provided packages 'libxml2-devel' and 'libxslt-devel' but we cannot recommend this.

RedHat/Centos/Scientific Linux 6 and 7, Fedora and similar Linux
distributions

Y ou need the 'libxml2-devel’ and 'libxslt-devel’ packages.
Debian, Ubuntu and similar Linux distributions

Y ou need the 'libxml2-dev' and 'libxslt1-dev ' packages.
openSUSE, SLES and similar Linux distributions

Y ou need the 'libxml2-devel’ and 'libxst-devel’ packages.
ArchLinux

Y ou need the 'libxml2' and 'libxdlt' packages.
Slackware

Y ou need the 'libxml2' and the 'libxdlt' packages. Both packages are part of the'l' package series.
FreeBSD

Y ou need the 'libxml2' and 'libxdlt' packages.
NetBSD

Y ou need the 'libxml2' and 'libxdlt" packages.
Openindiana 151a8

Y ou need the 'CSWIlibxml2-dev' and 'CSWIibxdlt-dev' packages.
Solaris 10

Both standard packages 'SUNWIxml' and 'SUNWIxd' are too old, we use the two CSW packages
'CSWIibxml2-dev' and 'CSWIibxslt-dev'.

1.2.14. XML filtering support with Textwolf

Wolframe can use Textwolf (http://textwolf.net) for filtering and the conversion of XML data.
The textwolf library is embedded in the subdirectory 3r dPar t y/ t ext wol f .

Y ou enable the building of aloadable Textwolf filtering module with:

make W TH TEXTWOLF=1

17

http://textwolf.net

Draft Installation from source Draft

Note: If you plan to run tests when building the Wolframe you should enable Textwolf as many tests
rely onit's presence.

1.2.15. JSON filtering support with cJSON

Wolframe can use cJSON (http://sourceforge.net/projects/cjson/) for filtering and the conversion of
JSON data.

The cjson library is embedded in the subdirectory 3r dParty/ | i bcj son.

Y ou enable the building of aloadable cJSON filtering module with:

make W TH_CISON=1

1.2.16. Scripting support with Lua

Wolframe can be scripted with Lua (http://www.lua.org).
The Luainterpreter is embedded in the subdirectory 3r dPar t y/ | ua.

Y ou enable the building of aloadable Lua scripting module with:
make W TH LUA=1

1.2.17. Scripting support with Python

Wolframe can be scripted with Python (https://www.python.org).
The module supports only version 3 of the Python interpreter, version 2 is not supported.

Y ou enabl e the building of aloadable Python scripting module with:
make W TH_PYTHON=1
Thelocation of the Python library can be overloaded with:

make W TH_PYTHON=1 \
PYTHON DI R=/usr /| ocal / Pyt hon-3.3.5

You can aso override al compilation and linking flags of the Python library separately:

make W TH PYTHON=1 \
PYTHON CFLAGS=- |/ usr/i ncl ude/ pyt hon3. 3m -1/ usr/i ncl ude/ pyt hon3. 3m\
PYTHON_LDFLAGS=-I pt hread - Xl i nk -export-dynam c \
PYTHON LI BS=-1 pyt hon3. 3m

Normally you should not change those flags by hand and rely on the results of the 'python-config'
script.

18

http://sourceforge.net/projects/cjson/
http://www.lua.org
https://www.python.org

Draft Installation from source Draft

RedHat/Centos/Scientific Linux 5, 6 and 7 and similar Linux
distributions

There are no official Python packages for version 3 of Python. Build your own version of Python.
Make sure the location of 'python3-config' isin your path.

Fedora and similar Linux distributions
Y ou need the 'python3-devel' package.

Debian, Ubuntu and similar Linux distributions
Y ou need the 'python3-dev' package.

openSUSE, SLES and similar Linux distributions
Y ou need the 'python3-devel' package.

ArchLinux

Y ou need the 'python’ package.

Slackware

On Slackware you have to build your own version of Python with:

./ configure --enabl e-shared
nmake
nmake install

Alternatively you can of course also build the 'python3' package with the help of SlackBuilds.

FreeBSD 10

Y ou need the 'python33' package.
FreeBSD 8 and 9

Build the BSD ports package for 'python33'. Thereis no binary Python 3 package.

NetBSD

Y ou need the 'python33' package.

Openindiana 151a8
We cannot use 'CSWpython31-dev' because it's build with the Forte compiler.
We build our own Python 3 with:
./configure --prefix=/opt/csw python-3.3.2/ --enable-shared

gmake
gmake install

19

Draft Installation from source Draft

Solaris 10
We cannot use 'CSWpython31-dev' because it's build with the Forte compiler.

We build our own Python 3 with:

./lconfigure --prefix=/opt/csw python-3.3.2/ --enable-shared
gmake
gmake install

1.2.18. Printing support with libhpdf

Wolframe can print with libhpdf (http://libharu.org/, also called libharu).

Y ou enable the building of aloadable libhpdf printing module with:
make W TH_SYSTEM LI BHPDF=1

Y ou can also link against the embedded version of libhpdf in '3rdParty/libhpdf' instead of the one of
the Linux distribution:

make W TH_LOCAL_LI BHPDF=1
The location of the libhpdf library can be overloaded with:

make W TH_SYSTEM LI BPHDF=1 \
LI BHPDF_DI R=/ usr/ | ocal /i bharu-2.2.1

You can aso override al compilation and linking flags of the libhpdf library separately:

make W TH_SYSTEM LI BPHDF=1 \
LI BHPDF_|I NCLUDE DI R=/ usr/l ocal /| i bharu-2.2.1/i ncl ude \
LI BHPDF_LI B DI R=/usr/local/libharu-2.2.1/1ib \
LI BHPDF_LI BS=-| hpdf

Though most Linux distributions have a'libhpdf' package we recommend to use the embedded version
2.3.0RC2 as this version contains many patches.

RedHat/Centos/Scientific Linux, Fedora and similar Linux
distributions

Y ou need the 'zlib-devel' and 'libpng-devel' packages to build libhpdf.
On Fedorayou can also try to use the 'libhpdf-devel’ package.
Debian, Ubuntu and similar Linux distributions

Y ou need the 'zliblg-dev' and 'libpngl2-dev' packages to build libhpdf.

20

http://libharu.org/

Draft Installation from source Draft

You can aso try to use the 'libhpdf-dev' package.

openSUSE, SLES and similar Linux distributions
Y ou need the 'zlib-devel’ and 'libpng12-devel’ or 'libpngl5-devel' packages to build libhpdf.
You can aso try to use the 'libhpdf-devel' package.
ArchLinux
Y ou need the 'zlib' and 'libpng' packages to build libhpdf.
Y ou can also try to use the 'libharu’ package.
Slackware

On Slackware you haveto build your own version of libhpdf. Y ou need the'zlib' and 'libpng' packages.

Both packages are part of the 'I' package series.

FreeBSD 10

Y ou need the 'libharu’ package.
FreeBSD 8 and 9

Build the embedded version of libhpdf with"'WITH_LOCAL_LIBHPDF=1".
Y ou need the 'png' package for this.

NetBSD
Build the embedded version of libhpdf with 'WITH_LOCAL_LIBHPDF=1".
Y ou need the 'png' and the 'zlib' packages for this.

Openindiana 151a8
Build the embedded version of libhpdf with"'WITH_LOCAL_LIBHPDF=1".
Y ou need the 'CSWIibz-dev' package for this.

Solaris 10

Build the embedded version of libhpdf with 'WITH_LOCAL_LIBHPDF=1'",
Y ou need the 'CSWIibz-dev' package for this.

'SUNWZzlib' is missing 64-bit support so don't useit!

1.2.19. Image processing with Freelmage

Wolframe can manipulate various image formats with the help of the Freelmage project (http:/
freeimage.sourceforge.net).

Y ou enable the building of aloadable Freelmage processing module with:

make W TH_SYSTEM FREEI MAGE=1

21

http://freeimage.sourceforge.net
http://freeimage.sourceforge.net

Draft Installation from source Draft

You can aso link against the embedded version of Freelmage in '3rdParty/freeimage’ instead of the
one of the Linux distribution:

make W TH_LOCAL_FREEI MAGE=1
Thelocation of the Freel mage package can be overloaded with:

make W TH_SYSTEM FREElI MAGE=1 \
FREEI MAGE_DI R=/ usr /1 ocal / Freel mage- 3. 15.4

Y ou can aso override al compilation and linking flags of the Freel mage package separately:

make W TH SYSTEM FREEI MAGE=1 \
FREEI MAGE_| NCLUDE_DI R=/ usr /| ocal / Freel mage- 3. 15. 4/ i ncl ude \
FREEI MAGE_LI B_DI R=/usr /| ocal / Freel mage-3.15.4/1ib \
FREEI MAGE_LI BS=-1 freei mage \
FREEI MAGEPLUS | NCLUDE_DI R=/ usr/ | ocal / Freel mage- 3. 15. 4/ i ncl ude \
FREEI MAGEPLUS LI B DI R=/usr /| ocal / Freel mage-3.15.4/1ib \
FREEI MAGEPLUS LI BS=-1freei nagepl us

Though there are Freel mage packages on most Linux distributionsyou may still want to usethelocally
embedded version.

RedHat/Centos/Scientific Linux and similar Linux distributions

There are Freelmage packages, but they are usually quite old. Better build you own version if
Freelmage.

Y ou need the 'zlib-devel' and 'libpng-devel' packages to build Freelmage.
Fedora and similar Linux distributions
Y ou need the 'zlib-devel' and 'libpng-devel' packages to build Freelmage.
Y ou may also try to use ‘freeimage-devel' package.
Debian, Ubuntu and similar Linux distributions
Y ou need the 'zliblg-dev' and 'libpng12-dev' packages to build Freelmage.
You can aso try to use the 'libfreeimage-devel’ package.
openSUSE, SLES and similar Linux distributions
Y ou need the 'zlib-devel’ and 'libpng12-devel' or 'libpngl5-devel' packages to build Freelmage.
You can aso try to use the 'freeimage-devel' package.
ArchLinux

Y ou need the 'freeimage’ package.

22

Draft Installation from source Draft

Slackware

On Slackware you have to build your own version of Freelmage. You need the 'zlib' and 'libpng'
packages. Both packages are part of the 'l' package series.

Alternatively you can of course also build the 'Freelmage' package with the help of SlackBuilds.

FreeBSD 10

Y ou need the 'freeimage’ package.

FreeBSD 8 and 9
Build the embedded version of Freelmage with 'WITH_LOCAL FREEIMAGE=1".
Y ou need the 'png' package for this.
Thereis aFreelmage port but it doesn't build the libfreeimageplus library we need.

Note: Freelmage doesn't build on 32-bit currently because gcc doesn't support some 64-bit constants
on FreeBSD.

NetBSD

Build the embedded version of Freelmagewith'WITH_LOCAL_FREEIMAGE=1". Y ou need the'png’
and the 'zlib' packages for this.

Openindiana 151a8
Build the embedded version of Freelmage with 'WITH_LOCAL_FREEIMAGE=1".

Y ou need the 'CSWIibz-dev' package for this.

Solaris 10
Build the embedded version of Freelmage with 'WITH_LOCAL_FREEIMAGE=1'".
Y ou need the 'CSWIibz-dev' package for this.

'SUNWZzlib' is missing 64-bit support so don't useiit!

1.2.20. zlib and libpng

Libhpdf needs the zlib and libpng libraries.
The location of the zlib and libpng package can be overloaded with:
make \

LI BZ_DI R=/usr/local/zlib-1.2.8 \
LI BPNG DI R=/usr /1 ocal /i bpng-1.6.10

Y ou can a'so override all compilation and linking flags of the zlib and libpng packages separately:

make \
LI BZ I NCLUDE DI R=/usr/local/zlib-1.2.8/include \
LIBZ LIB DIR=/usr/local/zlib-1.2.8/1ib \

23

Draft

Installation from source Draft

LI BZ LIBS=-1z \

LI BPNG_I NCLUDE DI R=/usr /1 ocal /i bpng-1. 6. 10/i ncl ude \
LI BPNG LI B_DIR=/usr/l ocal /libpng-1.6.10/1ibs \

LI BPNG_LI BS=-1 png

1.2.21. Support for ICU

Wolframe can use the International Components for Unicode (ICU, http://site.icu-project.org [http:/
site.icu-project.org/]) library for text normalization and conversion.

For this to work you need the ICU library itself (ICU4AC, at least version 3.6) and the 'boost-locale
library hasto have the ICU backend enabled. Thisisnot the casein al Linux distributions.

Note: The Wolframe server doesn't depend directly on the ICU library, only the ICU normalization
module does!

Y ou enable the building of aloadable ICU normalization module with:
make W TH | CU=1

The location of the ICU library can be overloaded with:

make W TH_ | CU=1 \
| CU DIR=/usr/local/icu4c-52_1

Y ou can aso override all compilation and linking flags of the ICU library separately:

make W TH | CU=1 \
| CU_I NCLUDE_DI R=/ usr /Il ocal /i cu4dc-52_1/i ncl ude \
I CU LIB DI R=/usr/local/icud4c-52_1/1ib \
| CU_LIBS=-1icuuc -licudata -licuil8n

RedHat/Centos/Scientific Linux, Fedora and similar Linux
distributions

Boost istoo old, build your own Boost locale and ICU support.

Fedora and similar Linux distributions

Y ou need the 'boost-devel' package. The official Boost packages have support for Boost locale and
the ICU backend.

Debian, Ubuntu and similar Linux distributions

Debian 6

The official Boost packages are too old, build your own Boost locale and ICU support.

Debian 7

Y ou need 'libboost-locale-dev' package.

24

http://site.icu-project.org/
http://site.icu-project.org/
http://site.icu-project.org/

Draft Installation from source Draft

Ubuntu 10.04.1 LTS, Ubuntu 12.04

The official Boost packages are not recent enough. Build your own Boost version with ICU support
here.

Ubuntu 13.10 and 14.04
Y ou need 'libboost-locale-dev' package.
openSUSE, SLES and similar Linux distributions

OpenSuSE 12.3, 13.1

Y ou need the 'boost-devel' package. The official Boost packages have support for Boost locale and
the ICU backend.

SLES 11 SP1, SP2 and SP3

The official Boost packages are not recent enough and lack 1CU support. Build your own Boost with
ICU support here.

ArchLinux

Y ou need the 'boost-libs' package. The official Boost package have support for Boost locale and the
ICU backend.

Slackware

The official Boost package contains support for boost-locale and the ICU backend. This package is
part of the'l' package series.

FreeBSD 10

The official Boost packages have a boost-locale library which has support for the ICU backend per
default.

FreeBSD 8 and 9

The official Boost packages don't contain a boost-locale with ICU backend.
Build Boost in this case with the patched from packagi ng/ pat ches/ Fr eeBSD applied.

Y ou aso need the 'icu’ package in this case.

NetBSD

Note: The Boost locale and 1CU support is currently broken, see also https://github.com/Wolframe/
Wolframe/issues/59.

Openindiana 151a8
You cannot use the 'SUNWicud/SUNWicu' and 'CSWIlibicu_dev' packages as they are both linked

with the Forte C++ compiler. Y ou have to compile your own version compiled with the gcc compiler
from CSW:

gtar zxf icud4c-51_2-src.tgz

25

https://github.com/Wolframe/Wolframe/issues/59
https://github.com/Wolframe/Wolframe/issues/59

Draft Installation from source Draft

apply the solaris XOPEN patich (packagi ng/ patches/ Sol ari s/i cu4c-1.51. 2/
i cu_source_conmon_uposi xdef s_h. pat ch), then build ICU with:

cd icu/source

./ runConfigurel CU Sol ari s/ GCC - -prefix=/opt/cswicudc-51.2
gmake

gmake install

Then build Boost as follows:

First apply al patchesfound in packagi ng/ pat ches/ Sol ari s/ 1. 55. 0.

Then build boost with:

./ bootstrap.sh --prefix=/opt/csw boost-1.55.0 \

--wWith-icu=/opt/cswicudc-51.2 \

--with-libraries=thread,fil esystem system program options, date_ti nme, regex, | oc
./b2 -a -sl CU PATH=/ opt/csw icud4c-51.2 -d2 install

Note: The only tested version for now is version 1.55.0! Other versions of Boost may work or not
work..

Solaris 10

We don't use the CSW boost packages.

You cannot use the 'SUNWicud/SUNWicu' and 'CSWIibicu_dev' packages as they are both linked
with the Forte C++ compiler. Y ou have to compile your own version compiled with the gcc compiler
from CSW:

gtar zxf icud4c-49 1 2-src.tgz

apply the solaris icu source configure patch (packagi ng/ patches/ Sol ari s/
i cudc-1.49. 2/icu_source_configure. pat ch), thenbuild ICU with:

cd icu/source

./runConfigurel CU Sol ari s/ GCC --prefix=/opt/cswicudc-49.1.2
gmake

gmake install

In Boost patch the correct architecture (V8 is not really supported, but V8 is also very old) and gcc
versionint ool s/ bui | d/ v2/ user-config.jam

using gcc @ 4.8.2 : g++ : <conpil eflags>-ncpu=v9 ;

Apply all Boost compilation patches from ‘packaging/patches/Solaris/boost-1.55.0" now.

Then build boost with:

26

Draft Installation from source Draft

./ bootstrap.sh --prefix=/opt/csw boost-1.55.0 \
--with-libraries=thread,fil esystem system program options, date_ti nme, regex, | oc
--with-icu=/opt/cswicudc-49.1.2

.Ib2 -a -sl CU PATH=/ opt/csw/icud4c-49.1.2 -d2 install

Note: The only tested version for now is version 1.55.0! Other versions of Boost may work or not:

Do not use boost 1.48.0, it breaks in the threading header files with newer gcc versions (4.8.x) and
runs only with old gcc versions (4.6.x).

Do not use boost 1.49.0, it has a missing function ‘fchmodat' causing building of libboost_filesystem
to fail!

Boost 1.50.0 thru 1.54.0 have never been tested with Wolframe, so don't use those!

1.2.22. Internationalization support with gettext

Wolframe has internationalization support with the help of the gettext mechanism.

Y ou can disable NLS support completly with:
make ENABLE_NLS=0

Per default it is enabled.

Linux distributions

'gettext’ and 'libintl' are nowadays part of the GNU C library on Linux. No specia provisions are
necessary.

FreeBSD

Y ou need the 'gettext' package.

NetBSD

‘gettext’ and 'libintl" are installed by defaullt.

Openindiana 151a8

Y ou need the 'CSWggettext-dev' package.

Solaris 10

Y ou need the 'CSWggettext-dev' package.

1.2.23. Authentication support with PAM

Wolframe can authenticate users with PAM.

Y ou enable the building of aloadable PAM authentication module with:

make W TH_PAME1

27

Draft Installation from source Draft

The location of the PAM library can be overloaded with:

make W TH _PAM-1 \
PAM Dl R=/ usr/ | ocal /pam 1.1.8

You can aso override al compilation and linking flags of the PAM library separately:

make W TH _PAM=1 \
PAM | NCLUDE_DI R=/ usr /Il ocal / pam 1. 1. 8/i ncl ude \
PAM LI B DI R=/usr/local /pam1.1.8/lib \
PAM LI BS=-1 pam

RedHat/Centos/Scientific Linux, Fedora and similar Linux
distributions

Y ou need the 'pam-devel' package.
Debian, Ubuntu and similar Linux distributions
Y ou need the 'libpamOg-dev' package.
openSUSE, SLES and similar Linux distributions
Y ou need the 'pam-devel’ package.
ArchLinux
Y ou need the ‘pam' package.
Slackware

On Slackware there is no official PAM package. Y ou have to build 'linux-pam' on your own.

FreeBSD

Note: We currently don't support PAM on FreeBSD.

NetBSD

Note: We currently don't support PAM on NetBSD.
Openindiana 151a8
PAM support is available out of the box just specify 'WITH_PAM=1".

Solaris 10

PAM support is available out of the box just specify 'WITH_PAM=1".

1.2.24. Authentication support with SASL

Wolframe can authenticate users with the Cyrus SASL library (http://cyrusimap.org/ [http:/
cyrusimap.org]).

28

http://cyrusimap.org
http://cyrusimap.org
http://cyrusimap.org

Draft Installation from source Draft

Note: GNU SASL iscurrently not supported.

Y ou enable the building of aloadable SASL authentication module with:
make W TH_SASL=1
Thelocation of the Cyrus SASL library can be overloaded with:

make W TH _SASL=1 \
SASL_DI R=/usr/ |l ocal / cyrus-sasl-2.1. 26

Y ou can aso override all compilation and linking flags of the Cyrus SASL library separately:

make W TH SASL=1 \
SASL_| NCLUDE_DI R=/ usr/ | ocal / cyrus-sasl -2. 1. 26/ i ncl ude \
SASL_LIB DI R=/usr/local /cyrus-sasl-2.1.26/1ib \
SASL_LI BS=-1sasl 2

RedHat/Centos/Scientific Linux, Fedora and similar Linux
distributions

Y ou need the 'cyrus-sasl-devel' package.
Debian, Ubuntu and similar Linux distributions
Y ou need the 'libsasi 2-dev' package.
For running the SASL tests you also need the 'sasl2-bin’ package.
openSUSE, SLES and similar Linux distributions
Y ou need the 'cyrus-sasl-devel' package.
ArchLinux
Y ou need the 'libsadl' package.
Slackware
Y ou need the ‘cyrus-sadl' package. This package is part of the 'n' package series.
FreeBSD
Y ou need the ‘cyrus-sadl' package.
NetBSD
Y ou need the 'cyrus-sad' package.
Openindiana 151a8

Y ou need the 'CSWsad' and 'CSWsasl-dev' packages.

29

Draft Installation from source Draft

Solaris 10

Y ou need the 'CSWsadl' and 'CSWsasl-dev' packages.

1.2.25. Testing Wolframe

Wolframe has tests written in Google gtest (https://code.google.com/p/googletest/).

Tests are run with:
make test

Some tests run for along time (regression and stress tests). They are not run per default when calling
'make test', but you have to call:

make | ongt est

Sometimes you only want to build the test programs but not to run them (for instance when cross-
compiling). Then you can set the'RUN_TESTS variable as follows:

make test RUN TESTS=0

1.2.26. Testing with Expect

Some more complex tests are written with Expect (http://expect.sourceforge.net/).

Y ou enable testing with Expect with:
make W TH _EXPECT=1
The location of the Expect interpreter can be overloaded with:

make W TH EXPECT=1 \
EXPECT=/ usr/ | ocal / bi n/ expect

RedHat/Centos/Scientific Linux, Fedora and similar Linux
distributions

Y ou need the 'expect’ and the 'telnet' packages.

Debian, Ubuntu and similar Linux distributions

Y ou need the 'expect’ and the 'telnet' packages.

openSUSE, SLES and similar Linux distributions

Y ou need the 'expect’ and the 'telnet' packages.

30

https://code.google.com/p/googletest/
http://expect.sourceforge.net/

Draft Installation from source Draft

ArchLinux
Y ou need the 'expect’ and 'inetutils packages.
Slackware

You need the 'expect' and 'telnet’ packages. Those packages are part of the 'tcl' respectively the 'n'
package series.

FreeBSD
Y ou need the 'expect’ package.
NetBSD

Y ou need the 'tcl-expect’ package.

Openindiana 151a8

Y ou need the 'CSWexpect' package.

Solaris 10

Y ou need the 'CSWexpect' package.

1.2.27. Building the documentation

The documentation including the man pages is written using DocBook (http://www.docbook.org).
Developer documentation is generated with Doxygen (http://www.doxygen.org).
All documentation is built in the 'docs subdirectory:

cd docs
make doc

Note: The various tools are not able to produce the same results on al platforms. Y our experiencein
the quality of the generated artifacts may vary. Generally, the newer the tools, the better.

The validity of the XML of the documenation can be checked with:

cd docs
make check

RedHat/Centos/Scientific Linux and similar Linux distributions
Y ou need the 'libxdt', 'doxygen' and ‘docbook-style-xd' packages (from EPEL).
When generating PDFs you need the 'fop' package.
When rebuilding the SV G images of the documentation you also need ‘dia.

Fedora and similar Linux distributions

Y ou need the 'libxdlt', 'doxygen' and 'docbook-style-xd' packages.

31

http://www.docbook.org
http://www.doxygen.org

Draft Installation from source Draft

When generating PDFs you need the 'fop' package.

When rebuilding the SVG images of the documentation you also need 'dia.

Debian, Ubuntu and similar Linux distributions
Y ou need the 'xsltproc’, 'doxygen’ and 'docbook-xsl* packages.
When generating PDFs you need the 'fop' package.
When rebuilding the SV G images of the documentation you also need 'did.

For checking the validity of various XML files you need 'libxml2-utils (for xmllint).

openSUSE, SLES and similar Linux distributions
Y ou need the 'libxdlt', 'doxygen' and 'docbook-style-xd' packages.
When generating PDFs you need the 'fop' package.

When rebuilding the SV G images of the documentation you also need 'did.

ArchLinux
Y ou need the 'libxdlt', 'doxygen’ and ‘docbook-xsl' packages.

When generating PDFs you need the 'fop' package. Newest versions run only with the SVN version
of 'java-xmlgraphics-commons. Install the package 'java-xmlgraphics-commons-svn' from the AUR.

When rebuilding the SV G images of the documentation you also need ‘did.

Slackware

You need the 'libxdlt' and 'doxygen’ packages. Those packages part of the 'I', 'd' package series.
DocBook you haveto install on your own.

When generating PDFs you have to install ‘fop' on your own.

When rebuilding the SV G images of the documentation you al so need ‘dia which youwill haveto build
on your own. Alternatively you can of course also build the 'dia package with the help of SlackBuilds.

FreeBSD

We never tried to build the documentation on FreeBSD so far.

NetBSD

We never tried to build the documentation on NetBSD so far.

1.2.28. Installation

The makefiles provide a'install’ and an 'uninstall’ target to install and uninstall the software.

The 'DESTDIR' and 'prefix' parameters are useful for packagers to reroute the destination of the
installation.

For instance:

make DESTDI R=/var/tnp prefix=/usr/local/wolfrane-0.0.3

32

Draft

Installation from source Draft

i nstall

installs the software in:

/var/tnp/usr/local/wol franme-0.0.3
/ sbi n/ wol framed
/var/tnp/usr/local/wol franme-0.0.3
/ et c/ wol f rane/ wol f rane. conf

The 'DEFAULT_MODULE _LOAD_DIR' parameter can be used by packagers to set the load
directory for loadable modules. For instance a Redhat SPEC file will contain aline like:

make DEFAULT MODULE LOAD DI R=9% _|i bdir}/wol frane/ nodul es

1.2.29. Manual dependency generation

Usually dependencies are automatically recomputed and stored in files with extension '.d'".

On some platforms and with some ol der versions of GNU make you can run into problems, especially
if you build the software in parallel. For this case you can force the computation of depenciesin a
special make step as follows:

make depend
meke -j 4

Additionally themake system understands'M AKEDEPEND', so you can provideyou own dependency
generator at need.
Especially useful is

make MAKEPEDS=/bi n/true depend
make -j 4

to avoid dependency management at all, for instance for one-time builds in continuous integration,
where the generation of working dependencies can take along time and is of no use.

1.2.30. Creating source tarballs

Wolframe supportsthe standard targets 'dist’, 'dist-Z', 'dist-gz' and 'dist-bz2' to create atarball containg
all the necessary sources.

1.2.31. Building the wolfclient

The wolfclient is a Qt-based client for the Wolframe server.

You build it with:

gmake -config debug -recursive
nmake

33

Draft

Installation from source Draft

make install

respectively for arelease version:

gmake -config rel ease -recursive
make
make install

Note: gmakeison some platforms called gmake-gt4 or gmake-gt5 and may beinstalled in non-standard
locations.

Note: Use gmake instead of make on FreeBSD, NetBSD and Solaris.

Y ou can run the unit tests of the client with:

make test

Note:For the tests to run you need an installed X server and have to set the DISPLAY variable
correctly.

Y ou can disable the building of SSL-enabled codeif you removethe'WITH_SSL=1' definitionin the
'DEFINES directivein| i bgt wol fcli ent/1ibgtwol fclient. pro.

You need the Qt libarary of the Unix system you are building on. The following list gives Linux
distribution respectively Unix specific instructions and lists the required packages.

You can use the Qt 4 or 5 version to build the client.

RedHat/Centos/Scientific Linux 5 and similar Linux distributions

The official Qt 4 package istoo old, build your own Qt library.

For Qt 5 compile your own version of the library.

RedHat/Centos/Scientific Linux 6 and 7 or similar Linux
distributions

For Qt 4 you need the 'qt4-devel' package.

For Qt 5 compile your own version of the library.

Fedora 19 and 20 and similar distributions

For Qt 4 you need the 'qt4-devel' package.

For Qt 5 you need the following packages: 'qt5-gtbase-devel', 'qt5-gttools-devel’, 'gt5-gttool s-static'.

Debian 6 and 7

For Qt 4 you need the 'libqt4-dev' package.

For Qt 5 compile your own version of the library.

Ubuntu 10.04.1 and 12.04

For Qt 4 you need the 'libqt4-dev' package.

Draft Installation from source Draft

For Qt 5 compile your own version of the library.

Ubuntu 13.10 and 14.04
For Qt 4 you need the 'libqt4-dev' package.

For Qt 5 you need the following packages: 'gt5-gmake’, 'libgt5designers', 'gtbase5-dev', 'gttool s5-dev',
‘gttool s5-dev-tools.

openSUSE 12.3, SLES and similar Linux distributions
For Qt 4 you need the 'libqt4-devel' package.
For Qt 5 compile your own version of the library.
openSUSE 13.1
For Qt 4 you need the 'libqt4-devel' package.
For Qt 5 you need the following packages: 'libgt5-qtbase-devel’, 'libqt5-qttools-devel'.
ArchLinux
For Qt 4 you need the 'qt4' package.
For Qt 5 you need the 'qt5-base’ and the 'qt5-tools' package.
Slackware
For Qt 4 you need the 'qt' package. This packageis part of the'l' package series.
For Qt 5 compile your own version of the library.

FreeBSD 8 and 9

For Qt 4 you need the following packages: 'gt4-gui’, 'gt4-moc', ‘qt4-network’, 'qt4-designer’, 'gt4-rcc,
‘gt4-uic', 'qt4-gmake’, 'qt4-linguist’.

For Qt 5 compile your own version of the library.

FreeBSD 10

For Qt 4 you need the following packages: 'gt4-gui’, 'qt4-moc', 'qt4-network’, 'qt4-designer’, 'qt4-rcc,
‘gtd-uic', 'qt4-gmake, 'qtd-linguist'.

For Qt 5 you need the following packages: 'gt5-gui', 'gt5-network’, 'qt5-widgets, 'gt5-designer’, 'qt5-
concurrent', 'qt5-uitool s, 'gt5-buildtool s, 'qt5-gmake’, 'qt5-linguisttools.

NetBSD
For Qt 4 you need the 'qt4' package.
Makesure/ usr/ pkg/ qt 4/ bi nand/ usr/ pkg/ bi n are part of the path.

Also set 'QTDIR to/ usr/ pkg/ gt 4.

Build the wolfclient with:

gmake -config debug -recursive

35

Draft Installation from source Draft

respectively

gmake -config rel ease -recursive

Before compiling apply the following patch command to the generated makefiles:

find . -name Makefile -exec sh -c \

"sed '"s/libtool --silent/libtool --silent --tag=CXX/g' {} > x & nmv x {}"

Now build normally with:;

gmake
gmake install

To run the wolfclient you have currently to set 'LD_LIBRARY_PATH'to/ usr/ X11R7/1i b.
Using Qt 5 for wolfclient is untested.
Openindiana 151a8
For Qt 4 you need the 'CSWqt4-dev' package (at least version '4.8.5,REV=2013.11.26").
Using Qt 5 for wolfclient is untested.
Solaris 10

For Qt 4 you need the 'CSWqt4-dev' package (at least version '4.8.5,REV=2013.11.26").

Before compiling apply the following patch command to the generated makefiles:

for i in “find . -nane Makefile ; do \
sed 's|-W,-rpath|-W,-R g $i > /tnmp/x; mv -f /tnp/x $i; \
done

Thisisbecausewe should use/usr/css/bin/ld aslinker and thisone unterstandsonly '-R' and not "-rpath'.

Now build normally with:

gmake
gmake install

Using Qt 5 for wolfclient is untested.

1.3. Building on Windows systems (the
NMAKE way)

This is the Unix-style compilation using the Visua Studio Command Line Window and NMAKE.
Thisisthe preferred way currently.

36

Draft

Installation from source Draft

1.3.1.

Prerequisites

For building Wolframe on Windows you need at |east the following software:
» Visual Studio C++ 2008 or newer (cl . exe, rc. exe, | i nk. exe and nmake. exe)
» Platform SDK 6.0a or newer

* nt. exe may be missing in your path (for instance in Visual Studio 2008 it was not bundled),
usualy it isavailable as part of the Platform SDK, copy it somewhere into the path

» Boost 1.48.0 or newer from http://www.boost.org
Depending on the features you want to use you aso may need the following software:
» The OpenSSL library 0.9.7 or newer, for encryption and authentication, http://www.openssl.org

» The PostgreSQL database client library, version 8.1 or newer, for storing user data and
authentication data in a PostgreSQL database, http://postgresql.org

» The Oracle OCI client library, version 11.2 or newer, for storing user data and authentication data
in an Oracle database, http://www.oracle.com

e Thewin-iconv library, version 0.0.3 or newer, needed by libxml2, http://code.google.com/p/win-
iconv/

» Thelibxml2 library, version 2.7.6 or newer, for filtering XML data, http://xmlsoft.org/
e Thelibxdtlibrary, version 1.1.26 or newer, for the transformation of XML data, http://xmlsoft.org/
» Python 3, version 3.3.0 or newer, for writting applications in Python, https://www.python.org

e The ICU library, version 3.5 or newer, for text normalization and conversion, http://site.icu-
project.org [http://site.icu-project.org/]

For testing the Wolframe software you need:
» Expect 5.40 or newer, for running the Expect tests, http://expect.sourceforge.net/

» Expect needs ActiveTcl 8.5 or newer, for running the Expect tests, http://www.activestate.com/
activetcl

» A working telnet

» A PostgreSQL or Oracle database when you want to run the database tests
For building Windows packages you need:

» The WIX Toolset, version 3.5 or newer, http://wixtoolset.org/

For building the documentation and manpages you need:

» Doxygen for developer documentation, http://www.doxygen.org

Docbook 4.5 or newer and the XSL toolchain, http://www.docbook.org

e xsl t proc. exe, from libxdlt http://xmlsoft.org/

The FOP PDF generator for documentation in PDF format, http://xmlgraphics.apache.org/fop/

e hhc. exe, help compiler from the 'HTML Help Workshop', http://msdn.microsoft.com/en-us/
library/windows/desktop/ms670169%628v=vs.85%29.aspx

37

http://www.boost.org
http://www.openssl.org
http://postgresql.org
http://www.oracle.com
http://code.google.com/p/win-iconv/
http://code.google.com/p/win-iconv/
http://xmlsoft.org/
http://xmlsoft.org/
https://www.python.org
http://site.icu-project.org/
http://site.icu-project.org/
http://site.icu-project.org/
http://expect.sourceforge.net/
http://www.activestate.com/activetcl
http://www.activestate.com/activetcl
http://wixtoolset.org/
http://www.doxygen.org
http://www.docbook.org
http://xmlsoft.org/
http://xmlgraphics.apache.org/fop/
http://msdn.microsoft.com/en-us/library/windows/desktop/ms670169%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms670169%28v=vs.85%29.aspx

Draft

Installation from source Draft

1.3.2.

For building the wolfclient you need:
» Qt4.6.xor later, or Qt 5, http://qt-project.org/

» For secure communication between the wolfclient and the Wolframe server you need the OpenSSL
library 0.9.7 or newer, http://www.openssl.org

Basic build instructions

Wolframe can be build in a Visual Studio command line (or better a Platform SDK command line)
using the following command:

nmake /nol ogo /f Makefile. W82
Y ou can check the compilation mode with:
set env

The makefiles understand the standard GNU targets like 'clean’, 'distclean’, 'test', etc. The whole list
of options can be seen with:

nmake /nol ogo /f Makefile.\W82 help
Configurationis al donein afilecaled confi g. nk. Examples can be found in the rakef i | es/
nmake directory.
Optional features are enabled by using 'WITH_XXX" variables when calling nmake, e. g. to enable
SSL support you call make like this:
nmake /nol ogo /f Makefile. W82 W TH SSL=1
On Windowsyou would rather changethe'OPENSSL_DIR' variableintheconf i g. ik, for instance:
OPENSSL_DI R = C:\ OpenSSL\ W n32

A complete build may look like this:

nmake /nol ogo /f Makefile. W2 WTH SSL=1 WTH EXPECT=1 W TH_LUA=1 ~
W TH SQ.I TE3=1 W TH PGSQL=1 W TH ORACLE=1 "
WTH LI BXM.2=1 W TH LI BXSLT=1 *
W TH LI BHPDF=1 W TH EXAMPLES=1 W TH | CU=1 W TH FREEI MAGE=1 *
W TH PYTHON=1 W TH CISON=1 W TH TEXTWOLF=1 *
clean all test

We currently have no dependency system for the NMAKE build system, so be careful when to use
‘clean’ to rebuild parts of the system.

Thisway of building the system is mainly useful for automatized systems and for packaging.

38

http://qt-project.org/
http://www.openssl.org

Draft Installation from source Draft

1.3.3. Using ccache and distcc

Ccache (http://ccache.samba.org/) can be used to cache the compilation of Wolframe aso on
Windows.

Youneedthenccache. exe binary with MSV C support from http://cgit.freedesktop.org/libreoffice/
contrib/dev-tool s/tree/ccache-msvc. Y ou al so need the Cygwin runtime from http://cygwin.org. Install
theccache. exe binary intoc: \ cygwi n\ bi n.

Set the 'CC' and 'CXX' variablesin makef i | es\ nmake\ confi g. nk asfollows:

CC=C: \ cygwi n\ bi n\ ccache. exe cl
CXX=C: \ cygwi n\ bi n\ ccache. exe cl

Set the following variable in the shell you use to compile Wolframe:

Set CYGW N=nodosfi | ewar ni ng

1.3.4. Boost

Boost (http://www.boost.org) is the only library which is absolutely required in order to build
Wolframe.

Use prebuild version of Boost

http://boost.teeks99.com provides pre-compiled packages of Boost. You can install the library into
for instance C. \ boost\ boost 1 55 0 and set the 'BOOST_XXX' variables in nakefi | es
\ nmake\ confi g. mk asfollows:

BOOST_DIR = C:\Boost\boost_1 55

BOOST | NCLUDE_DI R = $(BOOST_DI R)

BOOST_LDFLAGS = /LI BPATH: $(BOOST DI R)\ | i b32-msvc-10.0
BOOST_VC VER = vci100

BOOST_MI = -nt

Rename the directory C.\Boost\boost 1 55 O\libs to C:. \ Boost
\ boost 1 55 O\ boost.

Note: Those pre-built packages don't have support for the ICU backend in boost-locale. If you need
ICU support and enableit with'WITH_ICU=1" you will haveto build your own version of Boost from
the sources.

Build your own version of Boost

The following Boost libraries are required for building Wolframe:

boot strap

.\b2 --prefix=C.\boost\boost_1 55 ~

--with-thread --with-filesystem--w th-system --with-programoptions *
--with-date_tinme »

architecture=x86 address-nodel =64 t ool set =nmsvc *

install

39

http://ccache.samba.org/
http://cgit.freedesktop.org/libreoffice/contrib/dev-tools/tree/ccache-msvc
http://cgit.freedesktop.org/libreoffice/contrib/dev-tools/tree/ccache-msvc
http://cygwin.org
http://www.boost.org
http://boost.teeks99.com

Draft Installation from source Draft

Set "architecture’, ‘address-mode’ and 'tool set' fitting your platform.

If you want to build the ICU normalization module (WITH_ICU=1) you will have to build 'boost-
locale' with ICU support and you have to enable the ‘regex’ and the 'locale’ boost libraries too:

boot st rap
.\b2 --prefix=C:\boost\boost_1 55 *
--with-thread --with-filesystem--wth-system--with-programoptions *
--with-date tine --with-locale --with-regex *
-sl CU_ PATH="C: \ii cu4c-52_1-w n32-debug" *
architecture=x86 address-nodel =64 t ool set=nsvc *
i nstall

Set the "BOOST_XXX" variablesin makef i | es\ nmake\ confi g. nk asfollows:

BOOST_DIR = C:\ Boost\boost _1 55

BOOST_| NCLUDE_DI R = $(BOCST_DI R)

BOOST_LDFLAGS = /LI BPATH: $(BOOST_DI R)\ | i b32- nmsvc-10. 0
BOOST_VC VER = vc100

BOOST_MI = -nt

1.3.5. Secure Socket Layer (SSL)

The Wolframe protocol can be secured with SSL. Currently only OpenSSL (http://www.openssl.org)
is supported.

Note: No matter whether you use the precompiled version or if you build OpenSSL on your own use
the 0.9.8, 1.0.0 or 1.0.1g versions, but not the version 1.0.1 through 1.0.1f (Heartbleed bug)!

Use prebuild version of OpenSSL

You can get a prebuilt verson of OpenSSL from http://www.dl proweb.com/products/
Win320penSSL .html. Despite the name you get also 64-bit versions there.

Install the developer version (for instance W n320penSSL-1_0_1g. exe) for instance to C.
\ OpenSSL- W n32.

Do not copy the OpenSSL binariesto the Windows system directory, copy them to the Bin subdirectory
of the OpenSSL installation directory!

Set the "BOOST_XXX" variablesin makef i | es\ nmake\ confi g. mk asfollows:

OPENSSL_DI R = C:\ OpenSSL- W n32

Build your own version of OpenSSL

Y ou need the community edition of ActivePerl from http://www.activestate.com/activeperl/. Install it
for instanceto C: \ Per | .

You will also need NASM to assemble certain parts of OpenSSL. You can get a Windows NASM
from http://www.nasm.ug/. Install it for instanceto C:. \ nasm

40

http://www.openssl.org
http://www.slproweb.com/products/Win32OpenSSL.html
http://www.slproweb.com/products/Win32OpenSSL.html
http://www.activestate.com/activeperl/
http://www.nasm.us/

Draft

Installation from source Draft

1.3.6.

1.3.7.

Make sure the Perl interpreter and the NASM assembler are part of the path in the shell you want to
build OpenSSL:

Set PATH=UPATHY C:. \ Per |\ bi n; C:\ nasm

Get the source package openssl - 1. 0. 1g. t ar . gz of OpenSSL from http://www.openssl.org.

Configure the package with:

perl Configure debug- VG W N32 \
--prefix="C \openssl-1.0.1g-w n32-debug"

for adebug version, respectively with:

perl Configure VC WN32 \
--prefix="C:\openssl-1.0.1g-w n32-rel ease"

for arelease version.
Note: Make sure there prefix you choose has no spacesin it!

Prepare OpenSSL for NASM support with:
ns\ do_nasm bat
Build and install OpenSSL now with:

nmake /f nms\ntdll. nak
nmake /f nms\ntdl|.mak install

Morebuildinformationisavailablein | NSTALL. VB2 and | NSTALL. W64 of the OpenSSL package
itself.

SQLite database support

Wolframe can use an Sqglite3 database (http://sglite.org) as backend for data storage and for
authentication and autorization.

The Sqlite3 library is embedded in the subdirectory 3r dPar t y/ sql i t e3.

Y ou enable the building of aloadable Sqlite3 database module with:

nmake /nologo /f Makefile. W2 W TH SQLI TE3=1

PostgreSQL database support

Wolframe can use a PostgreSQL database (http://postgresql.org) as backend for data storage and for
authentication and autorization.

41

http://www.openssl.org
http://sqlite.org
http://postgresql.org

Draft Installation from source Draft

Use prebuild version of PostgreSQL

Download the Windows installer from EnterpriseDB (you reach the download link via http://
postgresqgl.org).

You will have to set some variablesin nakef i | es\ nmake\ confi g. nk asfollows:

PGSQ._DIR = C:\ Program Fi | es\ Post greSQ.\ 9. 3
PGLL WTH I 18N = 1

Y ou enabl e the building of aloadable PostgreSQL database module with:

nmeke /nol ogo /f Makefile. W2 W TH PGSQL=1

Build your own version of PostgreSQL

Y ou need the community edition of ActivePerl from http://www.activestate.com/activeperl/. Install it
for instanceto C: \ Per | .

Make sure the Perl interpreter is part of the path in the shell you want to build PostgreSQL :

Set PATH=%ATHY% C: \ Per |\ bin

Get the source package postgresql-9.3.4.tar.gz of PostgreSQL from http://
www.opstgresgl.org [http://www.postgresgl.org].

Configure the packageintheconf i g. pl filewhich you create as follows:

cd src\tool s\msvc
copy config_default.pl config.pl

Adapt confi g. pl to your needs. We actualy don't want to build the full server just the client
PostgreSQL library, so specifying the location of OpenSSL is enough:

openssl =>"C: \\ openssl - 1. 0. 1g- wi n32- debug”

Note: Those must be two backslashes!

If you built your own version of OpenSSL before you will be missing some linking libraries in the
right places. So copy them with:

nkdir C:\openssl-1.0.1g-w n32-debug\li b\VC

copy C:\openssl-1.0.1g-w n32-debug\lib\libeay32.1ib *
C.\openssl -1.0. 1g-wi n32-debug\ i b\ VQ\ | i beay32MDd. | i b

copy C:\openssl-1.0.1g-w n32-debug\lib\ssleay32.1ib *
C.\openssl -1.0. 1g-wi n32-debug\ | i b\ VC\ ssl eay32MDd. | i b

respectively if you built the release version:

42

http://postgresql.org
http://postgresql.org
http://www.activestate.com/activeperl/
http://www.postgresql.org
http://www.postgresql.org
http://www.postgresql.org

Draft

Installation from source Draft

1.3.8.

nmkdi r C:\openssl-1.0.1g-wi n32-rel ease\lib\VC

copy C\openssl-1.0.19g-wi n32-release\lib\libeay32.1ib »
C:\openssl -1.0. 1g-wi n32-rel ease\li b\ VC\ | i beay32MD. i b

copy C: \openssl-1.0.19g-wi n32-rel ease\lib\ssleay32.1ib »
C:\openssl -1.0. 1g-wi n32-rel ease\li b\ VC\ ssl eay32MD. 1 i b

Build thel i bpq library now with:
bui I d DEBUG I i bpq

respectively if you prefer arelease version:
bui | d RELEASE 1i bpq

Note: Y ou may haveto touch pr epr oc. ¢ and pr epr oc. h if 'build" wants to start 'bison’ and you
don't have 'bison’ installed.

Install the PostgreSQL client library for instance to C: \ Post gr eSQ_- 9. 3. 4- wi n32- debug
with:

install C:\PostgreSQ.-9.3.4-w n32-debug

Note: Unless you were able to build the whole PostgreSQL the ‘install' script will fail. In this case
copy the essential filesto for instance C: \ Post gr eSQ_- 9. 3. 4- wi n32- debug with:

nkdir C:\PostgreSQ.-9. 3.4\include

nkdir C \PostgreSQ.-9.3.4\Ilib

copy Debug\libpg\libpg.dl| C \PostgreSQ.-9.3.4\lib

copy Debug\libpg\libpg.lib C\PostgreSQ.-9.3.4\l1ib

copy src\interfaces\I|ibpg\libpg-fe.h C \PostgreSQ.-9.3.4\include
copy src\include\postgres_ext.h C:\PostgreSQ.-9. 3.4\include

copy src\include\pg config ext.h C \PostgreSQ.-9.3.4\include

Note: If you disable OpenSSL (for instance for debugging), you have to touch ssl i nf 0. sql in
contri b/ sslinfo. Thesameappliesfor uui d- ossp. sql and pgxmi . sqgl . i n.

Note: If you want to build PostgrSQL with gettext/libint or zlib support you have to build those
librariesfirst, or get them from http://gnuwin32.sourceforge.net/packages.html.

Oracle database support

Wolframe can use a Oracle database (http://www.oracle.com) as backend for data storage and for
authentication and autorization.

Import note: Make sure you have al the licenses to develop with Oracle and to install an Oracle
database! The Wolframe team doesn't take any responsability if licenses are violated!

Y ou have to download the two packagesi nst ant cl i ent - basic-nt-12.1.0. 1. 0. zi pand
instantclient-sdk-nt-12.1.0.1.0.zip and install them to for instance C. \ Or acl e
\instantclient 12 1.

43

http://gnuwin32.sourceforge.net/packages.html
http://www.oracle.com

Draft

Installation from source Draft

1.3.9.

You will haveto set the'ORACLE_DIR' variableinmakef i | es\ nnake\ confi g. nk asfollows:
ORACLE_DIR = C\Oacle\linstantclient_12_1
Y ou enabl e the building of aloadable Oracle database module with:

nmeke /nologo /f Makefile. W2 W TH ORACLE=1

XML filtering support with libxml2 and libxslt

Wolframe can use libxml2 and libxslt (http://xmlsoft.org/) for filtering and the conversion of XML
data

Y ou can build only filtering with libxml2. But if you enable libxdlt filtering you aso have to enable
libxml2 filtering.

Use prebuild versions of libxml2 and libxslt

Download theWindows ZIPfiles| i bxm 2-2. 7. 8. wi n32. zi p,i conv-1. 9. 2. wi n32. zi p
and libxslt-1.1.26.w n32.zip from http://ftp.zlatkovic.com/libxml/). Unpack them
for instance to: C:\libxm 2-2.7.8.win32, C\iconv-1.9.2.wn32 and C
\libxslt-1.1.26.w n32.

Y ou will haveto set the following variablesin makef i | es\ nnake\ confi g. nk:

ZLIB. DR = C\zlib-1.2.5. w n32

| CONV_DIR = C:\iconv-1.9.2.w n32
LIBXM.2_DIR = C\Ilibxm 2-2.7.8.w n32
LIBXSLT_DIR = C\libxslt-1.1.26.w n32

Y ou enable the building of aloadable libxml2/libxdlt filtering module with:

nmake /nol ogo /f Makefile. W82 W TH LI BXM_.2=1 W TH_LI BXSLT=1

Build your own version of LibXML2

For libxml2 to support character sets you need a working iconv library. We currently use wi n-
i conv-0. 0. 6. zi p from http://code.google.com/p/win-iconv/.

Build i conv. dI | with the supplied makefile from packagi ng\ pat ches\ W ndows\ wi n-
i conv\ Makefile. nmsvc and instal the results to for instance C.\wi n-i conv-0. 0. 6-
wi n32- debug with:

nmake /nol ogo /f Makefil e. nsvc DEBUG=1

nkdir C.\w n-iconv-0.0. 6-w n32-debug

nkdir C:\w n-iconv-0.0. 6-wi n32-debug\i ncl ude

nkdir C:\wi n-iconv-0.0.6-wi n32-debug\lib

nkdir C:\wi n-iconv-0.0. 6-w n32-debug\ bin

copy iconv.h C\w n-iconv-0.0.6-w n32-rel ease\i ncl ude
copy iconv.lib C\w n-iconv-0.0.6-w n32-debug\lib

44

http://xmlsoft.org/
http://ftp.zlatkovic.com/libxml/
http://code.google.com/p/win-iconv/

Draft Installation from source Draft

copy iconv.dll C\w n-iconv-0.0.6-w n32-debug\ bi n

respectively if you want to build arelease version:

nmake /nol ogo /f Makefile.nsvc

nkdir C \w n-iconv-0.0.6-wi n32-rel ease

nkdir C \wi n-iconv-0.0.6-wi n32-rel ease\i ncl ude

nkdir C.\win-iconv-0.0.6-wi n32-release\lib

nkdir C \wi n-iconv-0.0.6-wi n32-rel ease\bin

copy iconv.h C\w n-iconv-0.0.6-w n32-rel ease\i ncl ude
copy iconv.lib C\win-iconv-0.0.6-win32-release\lib
copy iconv.dll C\w n-iconv-0.0.6-w n32-rel ease\ bin

Adapt the 'ICONV_DIR' variablein makef i | es\ nnake\ confi g. nk asfollows:

| CONV_DIR = C:\wi n-iconv-0.0. 6-w n32-debug

Get the source packagel i bxml 2-2. 9. 1. t ar . gz from ftp://xmlsoft.org/libxml2/.

Configure libxml2, makeit use the 'win-iconv' library:

cd w n32

cscript configure.js conpiler=nmsvc
prefix="C\libxm 2-2.9.1-wi n32-rel ease"
[ib="C \win-iconv-0.0.6-wi n32-rel ease\lib"
i ncl ude="C:\wi n-iconv-0.0.6-w n32-rel ease\incl ude"
zl i b=no i conv=yes vcnanifest=yes

For a debug version you have to change 'debug' to ‘release’ in the paths and to add 'debug=yes and
‘cruntime=/MDd":

cd w n32

cscript configure.js conpiler=nmsvc
prefix="C\libxm 2-2.9.1-w n32-debug"
[ib="C \wi n-iconv-0.0.6-w n32-debug\Ilib"
i ncl ude="C:\wi n-iconv-0.0. 6-w n32-debug\i ncl ude”
zl i b=no i conv=yes vcmanifest=yes
debug=yes crunti nme=/ Mdd

Note: Try to avoid spacesin the installation prefix, if you really need some spaces then you will have
to fix them after running the conf i gur e. j s script by hand intheconfi g. nsvc file:

PREFI X="C:\ | i bxm 2-2.9.1 wi n32 debug"

Finally build and install libxml2 with:

nmake /nol ogo /f Makefile.nsvc all
nmake /nol ogo /f Makefile.nsvc install

45

ftp://xmlsoft.org/libxml2/

Draft Installation from source Draft

Adapt the 'LIBXML2_DIR' variablein makef i | es\ nmake\ confi g. nk asfollows:

LIBXML2 DIR = C\libxnm 2-2.9. 1-wi n32-debug

Build your own version of LibXSLT
Get the source packagel i bxslt-1. 1. 28. t ar. gz from ftp://xmisoft.org/libxslt/.

Configure libxslt, make it use the ‘win-iconv' and the 'libxml2' library compiled above:

cd win32

cscript configure.js conpil er=nsvc
prefix="C\libxslt-1.1.28-w n32-rel ease"
[ib="C\Ilibxm2-2.9.1-win32-rel ease\lib; C:\wi n-iconv-0.0.6-w n32-rel ease\lib"
i nclude="C:\1libxm 2-2.9.1-wi n32-rel ease\i ncl ude\libxm 2; C:\wi n-iconv-0.0. 6-w |
zl i b=no i conv=yes vcnanifest=yes

For a debug version you have to change 'debug’ to 'release’ in the paths and to add 'debug=yes and
‘cruntime=/MDd":

cd wi n32
cscript configure.js conpiler=nsvc
prefix="C\libxslt-1.1.28-w n32-debug"
[ib="C\Ilibxm2-2.9.1-wi n32-debug\|ib; C.\w n-iconv-0.0.6-w n32-debug\Ilib"
i nclude="C:\li bxm 2-2.9. 1-w n32-debug\i ncl ude; C.\wi n-i conv-0. 0. 6-w n32- debug\
zl i b=no iconv=yes vcnanif est=yes
debug=yes crunti ne=/ Md

Note: Try to avoid spacesin the installation prefix, if you really need some spaces then you will have
to fix them after running the conf i gur e. j s script by hand intheconfi g. nsvc file:

PREFI X="C:\l i bxslt-1.1.28 wi n32 debug"
Finally build and install libxdlt with:

nmeke /nologo /f Makefile.nsvc all
nmeke /nologo /f Makefile.nsvc install

Adapt the'LIBXSLT_DIR' variablein makef i | es\ nnmake\ confi g. nk asfollows:
LIBXSLT DIR = C:\libxslt-1.1.28-w n32-debug
The DLLs end up in the wrong directory, move them from 'lib' to 'bin":

cd C\libxslt-1.1.28-w n32-debug

46

ftp://xmlsoft.org/libxslt/

Draft

Installation from source Draft

nmove lib*.dll bin\.

1.3.10. XML filtering support with Textwolf

Wolframe can use Textwolf (http://textwolf.net) for filtering and the conversion of XML data.
The textwolf library is embedded in the subdirectory 3r dPart y/ t ext wol f .

Y ou enable the building of aloadable Textwolf filtering module with:

nmake /nologo /f Makefile. W2 W TH TEXTWOLF=1

Note: If you plan to run tests when building the Wolframe you should enable Textwolf as many tests
rely on it's presence.

1.3.11. JSON filtering support with cJSON

Wolframe can use cJSON (http://sourceforge.net/projects/cjson/) for filtering and the conversion of
JSON data.

The ¢json library is embedded in the subdirectory 3r dParty/ | i bcj son.

Y ou enable the building of aloadable cJSON filtering module with:

nmake /nol ogo /f Makefile. W82 W TH_CISON=1

1.3.12. Scripting support with Lua

Wolframe can be scripted with Lua (http://www.lua.org).
The Luainterpreter is embedded in the subdirectory 3r dPar t y/ | ua.

Y ou enable the building of aloadable L ua scripting module with:

nmake /nol ogo /f Makefile. W2 W TH LUA=1

1.3.13. Scripting support with Python

Wolframe can be scripted with Python (https://www.python.org).

The module supports only version 3 of the Python interpreter, version 2 is not supported.

Use prebuild version of Python

Download the official Python 3 Installer for Windows from http://python.org).

You will have to set the 'PYTHON_XXX' variables in nakefi | es\ nmake\ config. nk as
follows:

PYTHON DI R = C:\ Pyt hon34
PYTHON_VERSI ON = 34

47

http://textwolf.net
http://sourceforge.net/projects/cjson/
http://www.lua.org
https://www.python.org
http://python.org

Draft Installation from source Draft

PYTHON_MAJOR_VERSI ON = 3
PYTHON LI B DIR = $(PYTHON DI R)\ i bs
PYTHON DLL_DIR = $(PYTHON DI R)\ DLLs

Y ou enabl e the building of aloadable Python scripting module with:
nmake /nol ogo /f Makefile. W82 W TH_PYTHON=1

Note: The binary installation packages from http://python.org [http://python.org/]) do not contain
debug versions of thelibrary. If you want to build a debugging version of Wolframe you haveto build
your own version of Python.

Build you own version of Python

Y ou have to get the sources of Python3 called Pyt hon- 3. 4. 0. t ar from http://python.org [http://
python.org/]. Unpack it for instanceto C: \ Pyt hon- 3. 4. 0.

Open the solution file PCBui | d\ pcbui | d. sl n. Build the desired version. Read also PCBui | d
\readne. t xt.

Copy the resulting pyt hon34_d. | i b on top of the downloaded binary vesion in for instance C:
\ Pyt hon34\ i bs and pyt hon34_d. dl | toC:\ Pyt hon34\ DLLs.

You will have to set the 'PYTHON_XXX' variables in makef i | es\ nmake\ confi g. nk as
follows:

PYTHON DI R = C:\ Pyt hon34
PYTHON_VERSI ON = 34
PYTHON_MAJOR_VERSI ON = 3

PYTHON LI B DIR = $(PYTHON DI R)\ i bs
PYTHON DLL_DIR = $(PYTHON DI R)\ DLLs

1.3.14. Printing support with libhpdf

Wolframe can print with libhpdf (http://libharu.org/, aso called libharu).
The libhpdf library is embedded in the subdirectory 3r dPart y/ | i bhpdf .

Y ou enable the building of aloadable libhpdf printing module with:

nmake /nol ogo /f Makefile. W2 W TH_LI BHPDF=1

1.3.15. Image processing with Freelmage

Wolframe can manipulate various image formats with the help of the Freelmage project (http:/
freeimage.sourceforge.net).

The Freelmage package is embedded in the subdirectory 3r dPar t y/ f r eei mage.

Y ou enabl e the building of aloadable Freelmage processing module with:

48

http://python.org/
http://python.org/
http://python.org/
http://python.org/
http://python.org/
http://libharu.org/
http://freeimage.sourceforge.net
http://freeimage.sourceforge.net

Draft Installation from source Draft

nmake /nol ogo /f Makefile. W2 W TH_SYSTEM FREEI MAGE=1

1.3.16. zlib and libpng

Libhpdf needs the zlib and libpng libraries.

Thelibpng and zlib libraries are embedded in the subdirectory 3r dParty/ zl i b and 3r dPart y/
I'i bpng.

1.3.17. Support for ICU

Wolframe can use the International Components for Unicode (ICU, http://site.icu-project.org [http:/
site.icu-project.org/]) library for text normalization and conversion.

Use prebuild version of ICU

You can take the pre-build ZIP-files from http://site.icu-project.org [http://site.icu-project.org/],
called somthing like i cud4c-52_1- Wn32-nsvcl0. zi p and unpack them in for instance C.
\icud4c-52 1 1-Wn32-nsvclO.

You will haveto set the ICU_XXX' variablesin makef i | es\ nnake\ conf i g. nk asfollows:

| CU_LI B VERSION = 52
ICUDR = C\icu4c-52_1-Wn32-nmsvclO\icu

You aso have to build your own version of Boost, meaning the 'boost-local€' library has to be built
with ICU support enabled and you have to enable the 'regex' and the 'local€' boost libraries too:

boot st rap

.\b2 --prefix=C: \boost\boost 1 55 ~

--With-thread --with-filesystem--wth-system--with-programoptions *
--wWith-date tine --with-locale --with-regex *

-sl CU PATH="C: \i cu4c-52_1-w n32-debug" *

archi tecture=x86 address-nodel =64 t ool set=nsvc "

i nstall

Note: The binary installation packages from http://site.icu-project.org [http://site.icu-project.org/]) do
not contain debug versions of the library. If you want to build a debugging version of Wolframe you
have to build your own version of 1CU.

Build you own version of ICU

Y ou haveto get the ZIP file with the Windows sources called i cu4c-51_1- src. zi p from http://
site.icu-project.org [http://site.icu-project.org/]. Unpack it for instanceto C: \ i cu4c-52_1-src.

Open the solution file i cu\ source\al | i none\ al | i none. sl n. Build the desired version
(Release or Debug, 32-bit or 64-bit).

Best isto copy the resulting artifactsinto adirectory like C: \ i cu4c-52_1-wi n32- debug. Copy
intherethei ncl ude, bi nand! i b directories.

Adapt the'ICU_XXX' variablesin makef i | es\ nmake\ confi g. mk asfollows:

49

http://site.icu-project.org/
http://site.icu-project.org/
http://site.icu-project.org/
http://site.icu-project.org/
http://site.icu-project.org/
http://site.icu-project.org/
http://site.icu-project.org/
http://site.icu-project.org/
http://site.icu-project.org/
http://site.icu-project.org/

Draft Installation from source Draft

| CU LI B VERSION = 52
ICU DIR = C\icu4c-52_1-w n32-debug

Y ou build boost with boost-locale and ICU backend exactly the same way as with the pre-compiled
version of ICU:

boot strap

.\b2 --prefix=C: \boost\boost_1 55 *

--wWith-thread --with-filesystem--wth-system--with-programoptions *
--wWith-date tine --with-locale --with-regex *

-sl CU PATH="C: \ii cu4c-52_1-w n32-debug" *

archi tecture=x86 address-nodel =64 t ool set=nsvc "

i nstall

1.3.18. Testing Wolframe

Wolframe has tests written in Google gtest (https://code.google.com/p/googletest/).

Tests are run with:
nmake /nol ogo /f Makefile. W2 test

Some tests run for along time (regression and stress tests). They are not run per default when calling
'make test', but you have to call:

nmeke /nol ogo /f Makefile.\WB2 | ongtest

1.3.19. Testing with Expect

Some more complex tests are written with Expect (http://expect.sourceforge.net/).

Y ou enabl e testing with Expect with:

nmake /nol ogo /f Makefile. W2 W TH EXPECT=1
Y ou can get a Windows version of TCL from http://www.activestate.com/activetcl/. Take the 32-bit
community version, the the 64-bit version had no Expect available (at least at the time of writting).

Install ActiveTcl 8.6.1 to for instance C: \ Tcl 86.

Install Expect with:

cd C\Tcl 86
teacup install Expect

Adapt the following variablein makef i | es\ nmake\ confi g. nk:

TCL_DIR = C:\Tcl 86

50

https://code.google.com/p/googletest/
http://expect.sourceforge.net/
http://www.activestate.com/activetcl/

Draft Installation from source Draft

Some tests also need 'telnet'. If telnet is not enabled as Windows feature, enable it in " Control Panel”,
"Windows Features' under "Telnet Client".

1.3.20. Building the documentation

The documentation including the man pages is written using DocBook (http://www.docbook.org).

You need the Docbook XSLT files from http://sourceforge.net/projects/docbook/files/docbook-xsl -
ng. Install them and set the' XSLT_HTMLHELP_STYLESHEET' variablein makef i | es\ nmake
\ confi g. nk:

XSLT_HTMLHELP_STYLESHEET = C:\ docbook-xsl-1.76. 1\ ht m hel p\ ht m hel p. xsl
You will also need aworking xsl t pr oc. exe.
For generating CHM help files you have to install the "HTML Help Workshop and Documentation”

from Microsoft. Install it and set the 'HHC_LOCATION' variable in nakefi |l es\ nmake
\ confi g. nk:

HHC LOCATI ON = C:\ Program Fi | es\HTML Hel p Wor kshop\ hhc. exe
Developer documentation is generated with Doxygen (http://www.doxygen.org).
Get Doxygen from http://www.stack.nl/~dimitri/doxygen/, install it to for instance C. \ Doxygen and

set the ' DOXYGEN' variablein makef i | es\ nmake\ confi g. nk:

DOXYGEN = C:.\ Doxygen\ bi n\ doxygen. exe

1.3.21. Building the wolfclient

The wolfclient is a Qt-based client for the Wolframe server.

You build it for Qt 4 with:

C.\Q@\4. 8.1\ bi n\gnake. exe -config debug -recursive
nmake

respectively for arelease version:

C\Q\4.8.1\bin\gmake. exe -config rel ease -recursive
nmake

You build it for Qt 5 with:

C\Q@\Q@5.2. 1\5. 2. 1\ nsvc2010\ bi n\ gmake. exe -confi g debug -recursive
nmake

51

http://www.docbook.org
http://sourceforge.net/projects/docbook/files/docbook-xsl-ns/
http://sourceforge.net/projects/docbook/files/docbook-xsl-ns/
http://www.doxygen.org
http://www.stack.nl/~dimitri/doxygen/

Draft Installation from source Draft

respectively for arelease version:

CAQ\Q5.2.1\5. 2. 1\ nevc2010\ bi n\ gmeke. exe -config rel ease -recursive
nmake

If you want SSL support you have to download or build OpenSSL and rebuild Qt 4 or Qt 5 with SSL
support:

1.3.21.1. Secure Socket Layer (SSL)

The Wolframe protocol can be secured with SSL. Currently only OpenSSL (http://www.openssl.org)
is supported.

Note: No matter whether you use the precompiled version or if you build OpenSSL on your own use
the 0.9.8, 1.0.0 or 1.0.1g versions, but not the version 1.0.1 through 1.0.1f (Heartbleed bug)!

Use prebuild version of OpenSSL

You can get a prebuilt version of OpenSSL from http://www.dl proweb.com/products/
Win320penSSL .html. Despite the name you get also 64-bit versions there.

Install the developer version (for instance W n32CpenSSL-1_0_1g. exe) for instance to C.
\ OpenSSL- W n32.

Do not copy the OpenSSL binariesto the Windows system directory, copy them to the Bin subdirectory
of the OpenSSL installation directory!

Set the "BOOST_XXX" variablesin makef i | es\ nmake\ confi g. nk asfollows:

OPENSSL_DI R = C:\ OpenSSL- W n32

Build your own version of OpenSSL

Y ou need the community edition of ActivePerl from http://www.activestate.com/activeperl/. Install it
for instanceto C: \ Per | .

You will also need NASM to assemble certain parts of OpenSSL. You can get a Windows NASM
from http://www.nasm.ug/. Install it for instanceto C: \ nasm

Make sure the Perl interpreter and the NASM assembler are part of the path in the shell you want to
build OpenSSL.:

Set PATH=%PATHY% C. \ Per | \ bi n; C:\ nasm

Get the source packageopenssl - 1. 0. 1g. t ar. gz of OpenSSL from http://www.opensdl.org.

Configure the package with:

perl Configure debug-VC W N32 \
--prefix="C:\openssl-1.0.1g-w n32-debug"

for adebug version, respectively with:

52

http://www.openssl.org
http://www.slproweb.com/products/Win32OpenSSL.html
http://www.slproweb.com/products/Win32OpenSSL.html
http://www.activestate.com/activeperl/
http://www.nasm.us/
http://www.openssl.org

Draft Installation from source Draft

perl Configure VC-WN32 \
--prefix="C \openssl-1.0.1g-w n32-rel ease"

for arelease version.
Note: Make sure there prefix you choose has no spacesin it!

Prepare OpenSSL for NASM support with:
ns\ do_nasm bat
Build and install OpenSSL now with:

nmake /f ns\ntdl|. mak
nmake /f ns\ntdll.mak install

Morebuildinformationisavailablein | NSTALL. V82 and | NSTALL. W64 of the OpenSSL package
itsalf.

1.3.21.2. Qt libraries

Use prebuild version of Qt

Make sure you download the correct Qt package fitting your architecture and Microsoft Visual Studio
version.

If you take the prebuild Qt libraries you have to disable the building of SSL-enabled code by
removing the 'WITH_SSL=1" definition in the 'DEFINES' directive in | i bgt wol fclient/
libgtwol fclient. pro.

Build your own version of Qt

Set the following environment variablesin order for Qt to find the OpenSSL header filesand libraries:\

set OPENSSL_DI R=C:\ openssl - 1. 0. 1g- wi n32- debug
set | NCLUDE=% NCLUDE% %OPENSSL_DI R% i ncl ude
set LIB=%.1B% %OPENSSL_DI Rl ib

or for the release version:

set OPENSSL_DI R=C:\ openssl - 1. 0. 1g-wi n32-rel ease
set | NCLUDE=% NCLUDEY %OPENSSL_DI R% i ncl ude
set LI B=%.1IB% %OPENSSL_DI R®% i b

Compile Qt with OpenSSL enabled:

configure -platformw n32-nsvc2010 -debug - openssl
nmake

53

Draft Installation from source Draft

For arelease version use:

configure -platformw n32-nsvc2010 -rel ease -openssl
nmake

Wolframe Server Extension Modules

Write your own modules in C++

Draft Draft

Wolframe Server Extension Modules: Write your own modules in
C++

Publication date Aug 29, 2014 version 0.0.3
Copyright © 2010 - 2014 Project Wolframe

Commercial Usage. Licensees holding valid Project Wolframe Commercial licenses may use this file in accordance with the Project
Wolframe Commercial License Agreement provided with the Software or, alternatively, in accordance with the terms contained in a written
agreement between the licensee and Project Wolframe.

GNU General Public License Usage. Alternatively, you can redistribute this file and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

Wolframe is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

Y ou should have received a copy of the GNU General Public License along with Wolframe. If not, see http://www.gnu.org/licenses/

If you have questions regarding the use of thisfile, please contact Project Wolframe.

http://www.gnu.org/licenses/

Draft Draft

Table of Contents

[0l = 1o (o PP PUP PP POPPPPRPPP lix
O | oo (0ot o o H TSSO RPPPTT 1
2. BASIC DAA TYPES ...eeitieieiit ettt ettt ettt e et ettt et e e e e e e raa e aee 2
Y - Y o= PSP PP UPPPPPPR PP 2

3. MOAUIE DECIAIELION ...ttt ettt ettt ettt et e et e e e eb e e e e eba s 6
3.1. Module DeClaration FIaImMeuuiiiiiiie et 6
3.1.1. Empty Module Declaration EXamplecooovvviiiiiiiiieci e 6

3.1.2. Module Declaration MaCIOSuuieieiiiieiiiii et e e e e 6

3.2. BUIAING @ MOAUIE ...ttt 6

3.3. Exported Objects of @ MOAUIEcoouuiiiiiii e 6
3.3.1. Define Normalization Functions (NOrmMalizers)c.oveeveviinieiiiiineeniiien, 6
NOrMaliZer INEEITACEceeeeiieie e 7

BUIIAING BIOCKS ..ot 7

Declaring a resource singleton Objectccceviieiiiiiiieiiiiieeeiiees 7

Declaring a normalizer not USiNg any rESOUICEuueeeervieeeenrnaeeens 8

Declaring a normalizer USINQ @ reSOUICEccuuueeeeiineeeiiinieeeeninneaenns 8

EXBIMPIES ...t 8

Example WithOUL FESOUICESuuiiieiiiieeeiii et 8

EXample With FESOUICESccevviieiiiii e 9

3.3.2. Define CuStOM Daa TYPESueiiiriieeiiiiae et e et e ettt e e eees 10

Custom Data TYpe INterfacecoovviiiiiiic e 10
CustomDataType SITUCLUIEovevniiiriieieeee e e 10

CustomDatalnitializer Interfaceovvvveviiiiiiiiic e, 11

Class CUSIOMDEIAVAIUEc.uuieiiiiieeiiii e 12

BUIIAING BIOCKSceiiiieieii e 12

Declaring a custom data tyPeueeeevinieieiiiiieeiii e 12

3.3.3. DEfINE FlTEIS .ot 13

Filter €lement TYPES e 13

Filter element VAlUBSiiiiiiiiiei e 13

FIlter INTErfaceooove e 13

INPUE FlTEr STUCLUIE ...ooveiieiii e 13

OUutpUL FIlter SETUCTUNE ... 14

FIlter SITUCTUNE ..ot 16

BUIIAING BIOCKSceevtiieieii ettt e 16

Declaring @ filterco.uuiiiiiie e e 16

GlOSSANY ..ttt ettt et 17
F g0 (= TP PR SPPPTTR 18

Ivii

Draft Draft

List of Tables

3.1. Parameters of WF_MODULE_BEGINcccouuiiiiiiiiiiiiiec e 6
3.2, FIltEr @lEmMENT TYPES ...t 13

Iviii

Draft Draft

Foreword

This manual introduces the extension modules of Wolframe and explains how to build them. After
reading this you should be able to write Wolframe extension modules on your own.

lix

Draft Draft

Chapter 1. Introduction

First we introduce the basic C++ data structures you have to understand in order to develop your own
Wolframe modules. Later we will introduce the different module types and the building blocks used
to build them.

Draft

Draft

Chapter 2. Basic Data Types

In this chapter we give a survey of the basic data types used in the Wolframe module interfaces.

2.1. Variant Type

The variant data type describes an atomic value of any scalar or string type. It is the basic type for
interfacesto all language bindings for writing Wolframe applications. Thetype Var i ant isdefined
intypes/ vari ant . hpp and hasthe following interface;

nanespace Wl franme {

nanespace typ

cl ass Vari ant

{
public:

es {

/I Different value types a variant can have

enum Type

{

Cust om

Ti nest

anp,

Bi gNunber,

Doubl e

I nt,

Ul nt,

Bool ,

String
}s

/1<
/1<
/1<
/1<
/1<
/1<
/1<
/1<

data type defined by a customdata type nodul e

date and tinme value with a precision down to m crosecon
big BCD fixed point number in the range of 1E-32767 to

| EEE 754 doubl e precision floating point nunber

64 bit signed integer val ue

64 bit unsigned integer value

bool ean val ue

O-term nated UTF-8 string

//Current type enumor type nane of this:
Type type() const;
const char* typeNane() const;

//Null constructor:

Vari ant ()

/| Copy constructors:
bool 0);
doubl e 0);

Vari ant (
Vari ant (
Vari ant (
Vari ant (
Vari ant (
Vari ant (
Vari ant (
Var i ant (
Vari ant (
Vari ant (
Vari ant (
Vari ant (

Vari ant (
Vari ant (
Vari ant (

fl oat

0);

int o);
unsi gned int o0);
Data::Int 0);

Dat a: :
const
const
const
const
const
const
const
const
const

Ul nt

char*
char*
std::

0);

0);

0o, std::size_t n);
string& o);

Variant & o);

types:
types:
types:
types::
types::

: Cust onDat aType* typ
:CustonDatalnitializer* dsc=0);
: Cust onDat aVal ue& 0);

Dat eTi ne& o) ;

Bi gNunber & o) ;

/1 Assi gnnent operators:
Vari ant & operator=(const Variant& o);

Draft

Basic Data Types Draft

Vari ant & operat or=(bool 0);

Vari ant & operat or=(doubl e 0);

Variant & operator=(float 0);

Variant & operator=(int 0);

Vari ant & operat or=(unsigned int o);

Variant & operator=(Data::Int o0);

Variant & operator=(Data::U nt 0);

Vari ant & operat or=(const char* o0);

Vari ant & operator=(const std::string& o);

Vari ant & operat or=(const types:: CustonDataVal ue& o);
Vari ant & operat or=(const char* o0);

Vari ant & operator=(const types::DateTi ne& 0);
Vari ant & operat or=(const types:: Bi gNunmber & 0);

/llnitializer as constant (borrowed val ue reference):
void initConstant(const char* o, std::size_t |);
void initConstant(const std::string& o);

void initConstant(const char* 0);

/| Conpari son oper ators:

bool operator==(const Variant& 0) const;
bool operator!=(const Variant& o) const;
bool operator>(const Variant& o) const;
bool operator>=(const Variant& o) const;
bool operator<=(const Variant& 0) const;
bool operator<(const Variant& o) const;

[/ Getter functions with value conversion if needed:
std::string tostring() const;

std::wstring towstring() const;

doubl e t odoubl e() const;

bool tobool () const;

Data::Int toint() const;

Data::Unt touint() const;

Dat a: : Ti mnestanp toti nmestanp() const;

// Base pointer in case of a string (throws if not string):

char* charptr() const;

//Size in case of a string (throws if not string):

std::size_t charsize() const;

[l/\brief Get the pointer to the custom data object (throws for non custom
const CustonDat aVal ue* custonref() const;

[1/\brief Get the pointer to the custom data object (throws for non custom
Cust onDat aVal ue* custonref();

[1/\brief Get the pointer to the big nunber object (throws for non big nunb
const types::Bi gNunber* bi gnunref() const;

[l/\brief Get the pointer to the big nunber object (throws for non big nunb
types: : Bi gNunber * bi gnunref () ;

///\brief Getter with val ue conversion
Dat a: : Ti mnestanp toti nmestanp() const;

[l/\Dbrief Test if this value is atomc (not a structure or an indirection)
bool atom c() const;

//Evaluate if defined (not Null):

bool defined() const;

// Reset to Null:

void clear();

Draft

Basic Data Types Draft

/] Convert type:

voi d convert(Type type_);

// Move assignnent fromvalue o (o gets Null):

void nove(Variant& o);

[1/\brief Assigning o to this including a conversion to a defined type
voi d assign(Type type_, const Variant& o);

b

}} //namespace

Certain interfaces like filters use the type Var i ant Const that isthe same as a variant but does not
hold ownership on the value it references. Var i ant Const is defined to avoid unnecessary string
copies mainly in filters. It inherits the properties of the type Var i ant and adds or overwrites some
methods. Var i ant Const has to be used carefully because we have to ensure on our own that the
referenced value exists as long as the Var i ant Const variable exists. The mechanisms of C++ do
not support you here. You have to know what you do. The type Var i ant Const isaso defined in
t ypes/ vari ant . hpp and has the following interface:

nanespace _Wl franme {
nanespace types ({

struct VariantConst :public Variant
{
[/ Null constructor:
Vari ant Const () ;
/1 Copy constructors:
Vari ant Const (const Variant& o0);
Vari ant Const (const Vari ant Const & 0) ;
Vari ant Const (bool o0);
Vari ant Const (doubl e 0);
Vari ant Const (fl oat 0);
Vari ant Const (int 0);
Vari ant Const (unsigned int o0);
Vari ant Const (Data::Ilnt o0);
Vari ant Const (Data::Unt o);
Vari ant Const (const char* o0);
Vari ant Const (const char* o, std::size_t n);
Vari ant Const (const std::string& o);
Vari ant Const (const types:: Cust onDat aVal ue& o) ;
Vari ant Const (const types:: Bi gNunber & o) ;
Var i ant Const (const types::DateTi ne& o);

/I Assi gnnent operators:

Vari ant Const & operat or=(const Variant& 0);

Vari ant Const & oper at or=(const Vari ant Const& 0);
Var i ant Const & oper at or=(bool 0);

Vari ant Const & oper at or =(doubl e 0);

Vari ant Const & operator=(float 0);

Vari ant Const & operator=(int 0);

Vari ant Const & operator=(unsigned int o0);

Vari ant Const & operator=(Data::Int o0);

Vari ant Const & operator=(Data::U nt 0);

Draft

Basic Data Types

Draft

} .

}

Var i ant Const &
Var i ant Const &
Var i ant Const &
Var i ant Const &
Var i ant Const &
Var i ant Const &
Var i ant Const &

} //nanespace

oper at or =(
oper at or =(
oper at or =(
oper at or =(
oper at or =(
oper at or =(
oper at or =(

const
const
const
const
const
const
const

char* o0);

std::string& o);

types: : Cust onDat aVal ue& o) ;
types: : Bi gNunber & o) ;
types: : Dat eTi mne& o) ;

char* o0);

std::string& o);

Draft Draft

Chapter 3. Module Declaration

In this chapter we introduce how modules are declared for extending a Wolframe application with our
own functions and objects.

3.1. Module Declaration Frame

A module hasto include " appdevel/moduleFrameMacros.hpp” or simply "appDevel .hpp" and declare
amodule header and amodul e trailer with the macrosWF_ MODULE_BEGQ Nand WF_ MODULE_END.
A single module source file built as Wolframe application extension module must contain only one
WF_MODULE _BEG N WF_MODULE_END declaration. But a module declaration can contain an
arbitrary number of objects that not conflicting in anything they define (names, etc.) The following
example shows an empty module without any exported objects, thus the ssmplest module we can
declare.

3.1.1. Empty Module Declaration Example

#i ncl ude "appDevel . hpp"
WF_MODULE BEG N("enpty", "an exanpl e nodul e not exporting anything")
WF_MODULE_END

3.1.2. Module Declaration Macros
The macro WF_MODULE_BEGIN has two parameters

Table 3.1. Parametersof WF_MODULE_BEGIN

NAME DESCRIPTION
Identifier of the module (*) Description sentence of the module for user info when inspecting
amodule.

(*) Currently not used but will be when a namespace concept will be implemented.

The end declaration WF_MODULE_END closes the module object and defines the module entry
point structure.

3.2. Building a Module

For building a module you need to reference the Wolframe core library (-lwolframe) and eventually
some of the extension libraries (-lwolframe_serialize, -lwolframe_langbind, -lwolframe_database)
that'sal. Y ou will find example makefilesin the examples of the project. But you are free to use your
own build mechanism.

3.3. Exported Objects of a Module

In this section we explain how modulesarefilled with functionality. We can define an arbitrary number
of objectsin amodule aslong as they do not conflict (e.g. have name clashes etc.)

3.3.1. Define Normalization Functions (Normalizers)

In this chapter we introduce how to declare a normalizer function in amodule for defining your own
DLL form datatypes. First weintroduce the data structures you have to know to implement normalizer

Draft Module Declaration Draft

functions and then we will show the module building blocks to declare a normalizer function in a
module.

Normalizer Interface

A normalize function is defined as interface in order to be able to define it as object with data. This
is because normalizer functions can be parametrized. For example to express the normalize function
domain. The following listing shows the interface definition:

nanespace Wl franme {
nanespace types {

struct NornmlizeFunction

{

virtual ~NornalizeFunction(){}

virtual const char* name() const=0;

virtual Variant execute(const Variant& i) const=0;
1
1}

The object is created by a function type (here with the example function name
Cr eat eNor mal i zeFunct i on) with the following interface

_Wol frane: :types:: NormalizeFuncti on* CreateNormalizeFunction(
_Wol frane: :types:: Normal i zeResour ceHandl e* reshnd,
const std::vector<types::Variant>& arg);

The resource handle parameter (r eshnd) is the module singleton object instance that is declared as
class in the module building blocks (see following section). The argument (ar g) is alist of variant
type arguments that parametrize the function. What the function gets as arguments are the comma
separated list of parametersin '(* brackets *)' when the function is referenced in a. wnnp file (type
normalization declaration file, see section "Data Types in DDLS" in the chapter "Forms" of the
"Application Development Manual") or constructed with the provider.type method in a script.

Building Blocks

When you include "appdevel/normalizeModuleMacros.hpp” or simply "appDevel .hpp" you get the
building blocks declared to build a normalizer function in a module. These building blocks will be
exmplained in this section.

Declaring aresource singleton object

Some normalizer functions share resource object declared only once as a singleton in this module.
Such aresource classis defined as a class derived fromt ypes: : Nor mal i zeResour ceHandl e
with an empty constructor. When we have declared this resource signleton class we can includeiit in
the module before any normalizer referencing it as

WF_NORMALI ZER_RESOURCE(Resourced ass)

with Resour ced ass identifying the modul e singleton resource class and object.

Draft Module Declaration Draft

Declaring a normalizer not using any resource

The following declaration shows a declaration of a simple normalizer function.
WE_NORMALI ZER_FUNCTI ON(nane, const ruct or)
where name is the identifier string of the function in the system and constructor a function with the

signature of the Cr eat eNor mal i zeFunct i on shown in the section 'Normalize Interface' above.

Declaring a normalizer using a resource

The following declaration shows a declaration of a normalizer function using a
resource module singleton object defined as class 'ResourceClass and declared with the
WF_NORMAL I ZER RESOURCE macro (section 'Declaring a resource singleton object’).

WF_NORMALI ZER W TH_RESOURCE(nane, const r uct or, Resour ceCl ass)

The parameter nane and construct or are defined as in the WF_NORVALI ZER FUNCTI ON
macro.

Examples

Example without resources

As first example we show a module that implements 2 normalization functions | nt and Fl oat

without a global resource class. | nt converts a value to an 64 hit integer or throws an exception, if
thisis not possible. FI oat converts a value to a double presicion floating point number or throws
an exception, if thisis not possible.

#i ncl ude "appDevel . hpp"
usi ng nanmespace Wl franeg;

cl ass Nornalizel nt
:public types:: NormalizeFunction

{
publi c:
Normal i zel nt (const std::vector<types::Variant>&/{}
virtual ~Normalizelnt(){}
virtual const char* name() const
{return "int";}
virtual types::Variant execute(const types::Variant& i) const
{return types::Variant(i.toint());}
virtual types::NormalizeFunction* copy() const
{return new Nornmalizelnt(*this);}
1

cl ass Nornmal i zeFl oat
:public types::NormalizeFunction
{
public:
Nor mal i zeFl oat (const std::vector<types::Variant>&{}
virtual ~NornalizeFloat(){}
virtual const char* nanme() const
{return "float";}

Draft Module Declaration Draft

virtual types::Variant execute(const types::Variant& i) const
{return types::Variant(i.todouble());}

virtual types::NormalizeFunction* copy() const
{return new NormalizeFloat(*this);}

b
WF_MODULE_BEG N(
"exanpl el",
"normal i zer nodul e without resources")

WF_NORMALI ZER("int", Normalizelnt)
WF_NORMALI ZER("fl oat", NormalizeFl oat)

WF_MODULE_END

Example with resources
The second example show one of the functions in the example above (I nt) but declares to use
resources. The resource object is not really used, but you see in the example how it gets bound to the
function that usesiit.
#i ncl ude "appDevel . hpp"

usi ng nanmespace Wl franeg;

cl ass Conver si onResour ces
:public types:: NormalizeResourceHandl e

{
publi c:
Conver si onResour ces()
{}
virtual ~Conversi onResources()
{}
e

cl ass Nornalizel nt
:public types:: NormalizeFunction

{
public:
explicit Normalizelnt(const types::NormalizeResourceHandl e* res_,
const std::vector<types::\Variant>&)
:res(dynam c_cast <const Conversi onResources*>(res_)){}
virtual ~Normalizelnt()
{}
virtual const char* name() const
{return "int";}
virtual types::Variant execute(const types::Variant& i) const
{return types::Variant(i.toint());}
virtual types::NormalizeFunction* copy() const
{return new Normalizelnt(*this);}
private:
const Conver si onResour ces* res;
}s

Draft Module Declaration Draft

WF_MODULE_BEG N(
"exanpl e2",
"normal i zer nodule with resources")

WF_NORMALI ZER_RESCQURCE(Conver si onResour ces)
WF_NORVALI ZER W TH_RESOURCE(
"Int", Normalizelnt, ConversionResources)
WF_MODULE_END

3.3.2. Define Custom Data Types

In this chapter we introduce how to declare a custom data type in a module. Custom data types
can be used in scripting language bindings and as normalizers referenced in a . wnnp file (type
normalization declaration file, see section "Data Types in DDLSs" in the chapter "Forms" of the
"Application Development Manua") First we introduce the data structures you have to know to
implement a custom data type and then we will show the module building block to declare a custom
data typein amodule.

Custom Data Type Interface

A custom data type definition involves 3 classes: CustomDataType,CustomDataValue and
CustomDatal nitializer. The CustomDatalnitializer class is optional and only needed when value
construction has to be parametrized. If an initidizer is involved then it is created and passed
as argument to the method constructing the custom data type value (class CustomDataValue).
The class CustomDataType defines the custom data type and all its methods defined. The class
CustomDataV alue defines a value instance of thistype. The class CustomDatal nitializer, if specified,
defines an object describing the parametrization of the value construction. An example of aninitializer
could be the format of a date or the precision in afixed point number. The following listings show
these interfaces:

CustomDataType Structure

The class to build the custom data type definition structure composed of methods added with

Cust onDat aType: : define(..).From thisclasswe do not derive. We incrementally add
method by method by calling Cust onDat aType: : define(..) in the type constructor
function.

nanespace Wl franme {
nanespace types {

/1 Custom Data Type Definition

cl ass Cust onDat aType

{

publi c:
t ypedef unsigned int ID;
enum Unar yQper at or Type {I ncrenent, Decrenent, Negati on};
enum Bi nar yQper at or Type {Add, Subtract, Mul ti ply, Di vi de, Power, Concat };
enum Conver si onQper at or Type {ToStri ng, Tol nt, ToUl nt, ToDoubl e, ToTi nest anp} ;
enum Di nensi onOper at or Type {Lengt h};

typedef types::Variant (*ConversionQperator)(

10

Draft Module Declaration Draft

const CustonDat aVal ue& oper and) ;
typedef types::Variant (*UnaryQperator)(
const CustonDat aVal ue& oper and) ;
typedef types::Variant (*BinaryQperator)(
const CustonDat aVal ue& operand, const Variant& arg);
typedef std::size_t (*Di nensionQperator)(
const CustonDat aVal ue& arg);
typedef types::Variant (*CustonDataVal ueMet hod) (
const CustonDat avVal ue& val ,
const std::vector<types::Variant>& arg);
t ypedef CustonDat aVal ue* (*Cust onDat aVal ueConst ruct or) (
const CustonmDatalnitializer* initializer);
typedef CustonDatalnitializer* (*CreateCustonDatalnnitializer)(
const std::vector<types::Variant>& arg);

publi c:
Cust onDat aType()
:m.i d(0)
{
std::memset(&muvnt, 0, sizeof(muvnt));
}

Cust onDat aType(const std::string& name_,
Cust onDat aVal ueConstruct or constructor _,
CreateCustonmDatal nitializer initializerconstructor_=0);

voi d define(UnaryQperatorType type, UnaryOperator op);

voi d define(Bi naryQperatorType type, BinaryQOperator op);

voi d define(ConversionQperatorType type, Conversi onOperator op);
voi d define(Di mensionQperatorType type, D nmensionOperator op);

voi d define(const char* methodnane, CustonDataVal ueMet hod mnet hod);

b
typedef CustonDataType* (*CreateCustonDataType)(const std::string& name);

}}// nanespace

CustomDatalnitializer Interface

The custom datainizializer definition. From this class we have to derive our own initializer definions.

nanespace Wl franme {
nanespace types {

// Initializer for a custom data val ue
cl ass CustonDatalnitializer

{
publi c:

CustonDatal nitializer();

virtual ~CustonDatalnitializer();
¥,

}}// nanespace

11

Draft Module Declaration Draft

Class CustombDataValue

The custom data type value instance definition. From this class we have to derive our own custom
value definions.

nanespace Wl franme {
nanespace types {

// Custom data value interface
cl ass Cust onDat aVal ue

{

publi c:
Cust onDat aVal ue() ;
Cust onDat aVal ue(const Cust onDat aVal ue& 0);
virtual ~CustonDataVal ue();

const CustonDat aType* type() const;
const CustomDatalnitializer* initializer() const;

virtual int conmpare(const CustonDat aVal ue& o) const =0;
virtual std::string tostring() const=0;

virtual void assign(const Variant& o0)=0;

virtual CustonDataVal ue* copy() const=0;

/1 try to convert the value to one of the basic

/1 variant types and return true on success:
virtual bool getBaseTypeVal ue(Variant&) const;

}s

}}// nanespace

Building Blocks

When you include "appdevel/customDatatypeM oduleM acros.hpp™ or ssimply "appDevel.hpp" you get
the building block declared to build a custom data type in a module.

Declaring a custom data type

The following declaration shows a declaration of a simple custom data type.
WF_CUSTOM DATATYPE(nane, construct or)

where name is the identifier string of the function in the system and constructor a function with the
following signature:

t ypedef CustonDat aType* (*CreateCustonDataType)(const std::string& nane);

12

Draft Module Declaration Draft

3.3.3. Define Filters

In this chapter we introduce how to declare afilter type in a module. Filters are used to deserialize
input and to serialize output.

Filter element types

Filters provide a uniform interface to content as sequence of elements. The elements have one of the
following types.

Table 3.2. Filter element types

I dentifier Description

OpenTag Open asubstructure (element value is the name of the structure) as
the current scope.

CloseTag Close the current substructure scope or marks the end of the
document if there is no substructure scope open left (top level
close).

Attribute Declare an attribute (element value is the name of the attribute)

Value Declare a value. If the previous element was an attribute then the

value specifies the content value of the attribute. Otherwise the
value specifies the content value (only one allowed) of the current
substructure scope.

Filter element values

Filter values are chunks of the input and are interpreted depending on the filter element type.

Filter Interface

A filter definition is a structure with 2 substructure references: An input filter (InputFilter) and an
output filter (OutputFilter). Y ou have to include "filter/filter.hpp" to declare afilter.

Input Filter Structure

From thisinterface you have to derive to get an input filter class.

nanespace Wl franme {
nanespace | angbi nd {

/1 Input filter interface

class InputFilter

{

publi c:
/1 State of the input filter
enum St at e

{
Open, /1 normal input processing
EndOf Message, // end of nessage reached (yield)
Error /1 an error occurred

b

/1 Default constructor

13

Draft Module Declaration

Draft

explicit InputFilter(const char* name_);

/1 Copy constructor
[l/\paranfin] o input filter to copy
InputFilter(const InputFilter& o);

/1 Destructor
virtual ~lnputFilter();

/1l Get a self copy
virtual InputFilter* copy() const=0;

/1 Declare the next input chunk to the filter
virtual void putlnput(

const void* ptr,

std::size_t size, bool end)=0;

/1l Get the rest of the input chunk |eft
/1 unparsed yet (defaults to nothing left)
virtual void getRest(

const voi d*& ptr,

std::size_t& size, bool & end);

/1 CGet a named nmenber value of the filter
virtual bool getVal ue(
const char* id, std::string& val) const;

/1 Cet next el ement
virtual bool get Next(
El ement Type& type
const voi d*& el enment, std::size_t& el enentsize)=0;

/1 Cet the docunent neta data
virtual const types:: DocMet aDat a* get Met aDat a() ;

// Get the current state
State state() const;

/1 Set input filter state with error nessage
void setState(State s, const char* nsg=0);

b

/1 Shared input filter reference
t ypedef boost::shared ptr<inputFilter> InputFilterR

}}// nanespace
#endi f

Output Filter Structure

From thisinterface you have to derive to get an output filter class.

14

Draft

Module Declaration

Draft

nanespace _Wl franme {
nanespace | angbind {

/1l Qutput filter
class QutputFilter

:public FilterBase

{
publi c:
/] State of the input filter
enum St ate
{
Open, /1< normal input processing
EndCf Buf fer, /1< end of buffer reached
Error //< have to stop with an error
b
/1 Default constructor
Qut putFilter(
const char* nane_,
const ContentFilterAttributes* attr_=0);
/1 Copy constructor
QutputFilter(const QutputFilter& o);
/1 Destructor
virtual ~QutputFilter(){}
/1l Get a self copy
virtual QutputFilter* copy() const=0;
/1 Print the follow elenment to the buffer
virtual bool print(
El ement Type type,
const voi d* el enent,
std::size_t el ementsize)=0;
/1 Set the docunment neta data.
voi d set Met aDat a(const types:: DocMet aDat a& nd) ;
/[l Cet a reference to the docunent neta data.
const types::DocMet aDat a* get Met aDat a() const;
/1 Cet the current state
State state() const;
/1 Set output filter state with error nessage
void setState(State s, const char* nsg=0);
pr ot ect ed:
std::size_t wite(const void* dt, std::size_t dtsize);
b

[1/\typedef QutputFilterR
/1 Shared output filter reference
typedef types:: SharedReference<QutputFilter> QutputFilterR;

}}// nanespace

15

Draft Module Declaration Draft

#endi f

Filter Structure
The structure 'filter' you have to create and instantiate with an input filter and an output filter reference.

There is afilter type defined with a virtual constructor to instantiate the filter. From this class you
have to derive.

nanespace _Wl franme {
nanespace | angbind {

typedef std::pair<std::string,std::string> FilterArgunent;

class FilterType

{
publi c:

virtual ~FilterType(){}

virtual Filter* create(const std::vector<FilterArgunent>& arg) const=0;
b

}}// nanespace

Building Blocks

Whenyouinclude"appdevel/filterM oduleMacros.hpp" or simply "appDevel.hpp" you get the building
block declared to build afilter in amodule.

Declaring a filter

The following declaration shows a declaration of a simple custom data type.
WF_FI LTER _TYPE(nane, construct or)

where name is the identifier string of the function in the system and constructor a function with the
following signature:

typedef FilterType* (*CreateFilterType)();

16

Draft Draft

Glossary

Thisisthe glossary for the Wolframe Extensions Development Manual.

Wolframe glossary

Normalization Function A Normalization Function is a function taking an atomic value as input and
returning an atomic value as output. It validates the input and throws an
exception if the validation failes. It transforms the value into a normalized
form.

Variant Type A variant type represents an atomic value with its type. The value can appear
asan integral or floating or fixed point number or as a boolean or as a string.
The variant types helps to interface with interpreted non strongly typed or
value typed languages. The name "variant" for this type has been chosen
because it is used in many other systems (Microsoft COM/.NET, Qt, boost)
as name for this kind of aunion type.

17

Draft Draft

Index

18

	Wolframe documentation
	Table of Contents
	Developing Wolframe Server Applications
	Foreword
	Chapter 1. Introduction
	1.1. Architecture
	1.1.1. Presentation tier
	1.1.2. Logic tier
	Access control
	Data processing

	1.1.3. Data tier

	Chapter 2. Installation via binary packages
	2.1. Linux distributions
	2.1.1. RedHat, Fedora, CentOS, Scientific Linux and similar Linux distributions
	Available packages
	Prerequisites
	Install binary packages manually
	Install from repository

	2.1.2. Debian, Ubuntu and similar Linux distributions
	Available packages
	Prerequisites
	Install binary packages manually
	Install from repository

	2.1.3. openSUSE, SLES and similar Linux distributions
	Available packages
	Prerequisites
	Install binary packages manually
	Install from repository

	2.1.4. ArchLinux
	Available packages
	Prerequisites
	Install binary packages manually
	Install from repository
	Install from the AUR

	2.1.5. Slackware
	Available packages
	Prerequisites
	Install binary packages manually

	2.2. Other Unix systems
	2.2.1. FreeBSD
	2.2.2. NetBSD
	2.2.3. Solaris 10

	Chapter 3. Configuration
	3.1. Service or daemon configuration
	3.1.1. Windows
	3.1.2. Unix

	3.2. Server configuration
	3.2.1. Listen
	3.2.2. ListenSSL
	3.2.3. IP restrictions

	3.3. Logger configuration
	3.3.1. Log message types and log levels
	3.3.2. Log backends
	Backend console
	Backend logfile
	Backend syslog
	Backend eventlog

	3.4. Modules
	3.5. Global settings
	3.6. Database configuration
	3.6.1. PostgreSQL
	Requirements
	Configuration settings
	Example configuration

	3.6.2. Sqlite3
	Requirements
	Configuration settings
	Example configuration

	3.6.3. Oracle
	Requirements
	Configuration settings
	Example configuration

	Chapter 4. AAAA
	4.1. Introduction
	4.2. Embedding AAAA into an existing infrastructure
	4.3. AAAA configuration
	4.4. Authentication
	4.4.1. Requirements
	4.4.2. Configuration settings
	4.4.3. Example configuration
	4.4.4. Authentication mechs
	4.4.5. Development status

	4.5. Authorization
	4.5.1. Authorization based on connection info
	4.5.2. Authorization based on identity
	4.5.3. Command execution authorization
	Development status

	4.6. Auditing and accounting
	4.6.1. Development status

	Chapter 5. Data processing
	5.1. Processor Configuration
	5.2. Application Server Requests
	5.3. Command handler
	5.3.1. The standard command handler
	Introduction
	Example configuration
	Example command description
	Command description language
	Keywords
	Simple document map
	Command with action prefix
	Explicit function name declaration
	Returned document declaration
	Returned document meta data
	Skipping the document validation
	Return a standalone document
	Explicit filter definitions for a command
	Authorization checks
	Adding parameters from the execution context
	Using brackets
	Overview

	5.4. Functions
	5.4.1. Transactions in TDL
	Introduction
	Some internals
	Configuration
	Language description
	Subroutines
	Transaction function declarations
	Main processing instructions
	Main processing example

	Preprocessing instructions
	Preprocessing example

	Selector path
	Path expression examples
	Path usage example

	Referencing Database Results
	Naming database results
	Named Result Example

	Referencing Subroutine Parameters
	Constraints on database results
	Example with result constraints

	Rewriting error messages for the client
	Database error HINT example

	substructures in the result
	Explicit sefinition of elements in the result
	Database specific code
	Subroutine templates
	Includes
	Auditing
	Audit example with function call syntax
	Audit example with parameter as structure

	5.4.2. Functions in .NET
	Introduction
	Configuration
	Function interface
	Function context
	Function signature
	Example

	Prepare .NET assemblies
	Make assemblies COM visible
	Tag exported objects with a Guid
	Add marshalling tags to values
	Example with COM introspection tags
	Create a type library
	Register the type library
	Register the assembly in the GAC
	Register the types in the assembly

	Calling Wolframe functions
	Configure .NET assemblies
	Assembly Declaration
	Get the PublicKeyToken

	Validation issues

	5.4.3. Functions in python
	Current development status

	5.4.4. Functions in Lua
	Introduction
	Configuration
	Declaring functions
	Wolframe provider library
	Using atomic data types
	Data type 'datetime'
	Data Type 'bignumber'

	Filter interface iterators
	Iterator library
	Global objects
	Using forms
	Form functions
	List of Lua objects

	5.4.5. Functions in native C++
	Introduction
	Prerequisites
	Declaring functions
	Example Function Declaration

	Input/output data structures
	Header file
	Source file

	Writing the module
	Module declaration

	Building the module
	Using the module
	Validation issues

	5.5. Forms
	5.5.1. Form data definition languages
	Introduction
	Forms in simpleform DDL
	Commands
	Structures
	Elements of structures
	Embedded structure definitions
	Default atomic value assignments
	Types of atomic values
	Element attributes
	Embedding elements and inheritance
	Declaring document meta data
	Example form definition

	5.5.2. Datatypes in DDLs
	Introduction
	Example
	Language description
	Type assignments
	Standard modules for normalizers

	Configuration

	5.6. Filters
	5.6.1. XML Filter
	Introduction
	Character set encodings
	Configuration

	5.6.2. JSON filter
	Introduction
	Character set encodings
	Configuration

	5.6.3. XSLT Filter
	Introduction
	Character set encodings
	Configuration

	5.7. Testing and defect handling
	5.7.1. Using wolfilter
	Test configuration
	Testing a filter
	Testing a Form
	Testing a Function

	Glossary
	Index
	Appendix A. GNU General Public License version 3

	Wolframe Clients
	Chapter 1. Introduction
	Chapter 2. Clients with PHP
	2.1. Requirements
	2.2. PHP client modules
	2.2.1. Example script implementing a request
	2.2.2. Example script for a password change
	2.2.3. The session interface

	2.3. Installation

	Chapter 3. Clients with .NET (C#)
	3.1. C# client modules
	3.1.1. Example script
	3.1.2. The session interface
	3.1.3. The session constructor

	Chapter 4. Clients with Qt
	4.1. Architecture
	4.2. Artifacts
	4.2.1. UI forms
	4.2.2. UI form translations
	4.2.3. Resources

	4.3. Programming the interface
	4.3.1. Mapping XML data
	Starting position
	First example
	Another example

	4.3.2. Switching UI forms
	4.3.3. States and behaviour
	Reserved private dynamic properties
	Reserved public dynamic properties
	Stearing of widget behaviour
	User interface flow
	Additional interface elements
	Defining server request/answer
	Variables and symbolic links
	Widget states depending on data
	Additional signals and slots
	Drag and drop

	4.3.4. Widget properties as dynamic property values

	4.4. Programming server requests/answers
	4.4.1. Adressing widget data
	Biggest common ancestor path
	Addressing atomic elements
	Special path elements
	Addressing the form widget
	Widget links

	4.4.2. Data structures
	Example

	4.4.3. Arrays
	Description
	Example

	4.4.4. Indirection and recursion
	Description
	Example (arbitrary tree)
	Example (binary tree)

	4.5. Eliminating interface defects
	4.5.1. Switch the developer mode on
	4.5.2. Inspect errors and warnings and debug messages reported

	Index

	Wolframe Installation from Source
	Chapter 1. Installation from source
	1.1. Source Releases
	1.2. Building on Unix systems
	1.2.1. Prerequisites
	1.2.2. Basic build instructions
	1.2.3. GCC compiler
	1.2.4. clang compiler
	1.2.5. Intel compiler
	1.2.6. Using ccache and distcc
	1.2.7. Platform-specific build instructions
	FreeBSD
	NetBSD
	OpenIndiana 151a8
	Solaris 10

	1.2.8. Boost
	Build your own version of Boost
	RedHat, Fedora, CentOS, Scientific Linux and similar Linux distributions
	RedHat/Centos/Scientific Linux 5 and similar Linux distributions
	RedHat 6
	Centos/Scientific Linux 6 and similar Linux distributions
	RedHat/Centos/Scientific Linux 7 and similar Linux distributions
	Fedora and similar Linux distributions

	Debian, Ubuntu and similar Linux distributions
	Debian 6
	Debian 7
	Ubuntu 10.04.1 LTS, Ubuntu 12.04
	Ubuntu 13.10 and 14.04

	openSUSE, SLES and similar Linux distributions
	OpenSuSE 12.3, 13.1
	SLES 11 SP1, SP2 and SP3

	ArchLinux
	Slackware
	FreeBSD 10
	FreeBSD 8 and 9
	NetBSD
	OpenIndiana 151a8
	Solaris 10

	1.2.9. Secure Socket Layer (SSL)
	RedHat, Fedora, CentOS, Scientific Linux and similar Linux distributions
	Debian, Ubuntu and similar Linux distributions
	openSUSE, SLES and similar Linux distributions
	ArchLinux
	Slackware
	FreeBSD
	NetBSD
	OpenIndiana 151a8
	Solaris 10

	1.2.10. SQLite database support
	RedHat/Centos/Scientific Linux 5 and similar Linux distributions
	RedHat/Centos/Scientific Linux 6 and 7, Fedora and similar Linux distributions
	Debian, Ubuntu and similar Linux distributions
	openSUSE, SLES and similar Linux distributions
	ArchLinux
	Slackware
	FreeBSD
	NetBSD
	OpenIndiana 151a8
	Solaris 10

	1.2.11. PostgreSQL database support
	RedHat, Fedora, CentOS, Scientific Linux and similar Linux distributions
	Debian, Ubuntu and similar Linux distributions
	openSUSE, SLES and similar Linux distributions
	ArchLinux
	Slackware
	FreeBSD 10
	FreeBSD 8 and 9
	NetBSD
	OpenIndiana 151a8
	Solaris 10

	1.2.12. Oracle database support
	RedHat, Fedora, CentOS, Scientific Linux and similar Linux distributions
	Debian, Ubuntu and similar Linux distributions
	openSUSE, SLES and similar Linux distributions
	ArchLinux
	Slackware
	FreeBSD
	NetBSD
	OpenIndiana 151a8
	Solaris 10

	1.2.13. XML filtering support with libxml2 and libxslt
	RedHat/Centos/Scientific Linux 5 and similar Linux distributions
	RedHat/Centos/Scientific Linux 6 and 7, Fedora and similar Linux distributions
	Debian, Ubuntu and similar Linux distributions
	openSUSE, SLES and similar Linux distributions
	ArchLinux
	Slackware
	FreeBSD
	NetBSD
	OpenIndiana 151a8
	Solaris 10

	1.2.14. XML filtering support with Textwolf
	1.2.15. JSON filtering support with cJSON
	1.2.16. Scripting support with Lua
	1.2.17. Scripting support with Python
	RedHat/Centos/Scientific Linux 5, 6 and 7 and similar Linux distributions
	Fedora and similar Linux distributions
	Debian, Ubuntu and similar Linux distributions
	openSUSE, SLES and similar Linux distributions
	ArchLinux
	Slackware
	FreeBSD 10
	FreeBSD 8 and 9
	NetBSD
	OpenIndiana 151a8
	Solaris 10

	1.2.18. Printing support with libhpdf
	RedHat/Centos/Scientific Linux, Fedora and similar Linux distributions
	Debian, Ubuntu and similar Linux distributions
	openSUSE, SLES and similar Linux distributions
	ArchLinux
	Slackware
	FreeBSD 10
	FreeBSD 8 and 9
	NetBSD
	OpenIndiana 151a8
	Solaris 10

	1.2.19. Image processing with FreeImage
	RedHat/Centos/Scientific Linux and similar Linux distributions
	Fedora and similar Linux distributions
	Debian, Ubuntu and similar Linux distributions
	openSUSE, SLES and similar Linux distributions
	ArchLinux
	Slackware
	FreeBSD 10
	FreeBSD 8 and 9
	NetBSD
	OpenIndiana 151a8
	Solaris 10

	1.2.20. zlib and libpng
	1.2.21. Support for ICU
	RedHat/Centos/Scientific Linux, Fedora and similar Linux distributions
	Fedora and similar Linux distributions
	Debian, Ubuntu and similar Linux distributions
	Debian 6
	Debian 7
	Ubuntu 10.04.1 LTS, Ubuntu 12.04
	Ubuntu 13.10 and 14.04

	openSUSE, SLES and similar Linux distributions
	OpenSuSE 12.3, 13.1
	SLES 11 SP1, SP2 and SP3

	ArchLinux
	Slackware
	FreeBSD 10
	FreeBSD 8 and 9
	NetBSD
	OpenIndiana 151a8
	Solaris 10

	1.2.22. Internationalization support with gettext
	Linux distributions
	FreeBSD
	NetBSD
	OpenIndiana 151a8
	Solaris 10

	1.2.23. Authentication support with PAM
	RedHat/Centos/Scientific Linux, Fedora and similar Linux distributions
	Debian, Ubuntu and similar Linux distributions
	openSUSE, SLES and similar Linux distributions
	ArchLinux
	Slackware
	FreeBSD
	NetBSD
	OpenIndiana 151a8
	Solaris 10

	1.2.24. Authentication support with SASL
	RedHat/Centos/Scientific Linux, Fedora and similar Linux distributions
	Debian, Ubuntu and similar Linux distributions
	openSUSE, SLES and similar Linux distributions
	ArchLinux
	Slackware
	FreeBSD
	NetBSD
	OpenIndiana 151a8
	Solaris 10

	1.2.25. Testing Wolframe
	1.2.26. Testing with Expect
	RedHat/Centos/Scientific Linux, Fedora and similar Linux distributions
	Debian, Ubuntu and similar Linux distributions
	openSUSE, SLES and similar Linux distributions
	ArchLinux
	Slackware
	FreeBSD
	NetBSD
	OpenIndiana 151a8
	Solaris 10

	1.2.27. Building the documentation
	RedHat/Centos/Scientific Linux and similar Linux distributions
	Fedora and similar Linux distributions
	Debian, Ubuntu and similar Linux distributions
	openSUSE, SLES and similar Linux distributions
	ArchLinux
	Slackware
	FreeBSD
	NetBSD

	1.2.28. Installation
	1.2.29. Manual dependency generation
	1.2.30. Creating source tarballs
	1.2.31. Building the wolfclient
	RedHat/Centos/Scientific Linux 5 and similar Linux distributions
	RedHat/Centos/Scientific Linux 6 and 7 or similar Linux distributions
	Fedora 19 and 20 and similar distributions
	Debian 6 and 7
	Ubuntu 10.04.1 and 12.04
	Ubuntu 13.10 and 14.04
	openSUSE 12.3, SLES and similar Linux distributions
	openSUSE 13.1
	ArchLinux
	Slackware
	FreeBSD 8 and 9
	FreeBSD 10
	NetBSD
	OpenIndiana 151a8
	Solaris 10

	1.3. Building on Windows systems (the NMAKE way)
	1.3.1. Prerequisites
	1.3.2. Basic build instructions
	1.3.3. Using ccache and distcc
	1.3.4. Boost
	Use prebuild version of Boost
	Build your own version of Boost

	1.3.5. Secure Socket Layer (SSL)
	Use prebuild version of OpenSSL
	Build your own version of OpenSSL

	1.3.6. SQLite database support
	1.3.7. PostgreSQL database support
	Use prebuild version of PostgreSQL
	Build your own version of PostgreSQL

	1.3.8. Oracle database support
	1.3.9. XML filtering support with libxml2 and libxslt
	Use prebuild versions of libxml2 and libxslt
	Build your own version of LibXML2
	Build your own version of LibXSLT

	1.3.10. XML filtering support with Textwolf
	1.3.11. JSON filtering support with cJSON
	1.3.12. Scripting support with Lua
	1.3.13. Scripting support with Python
	Use prebuild version of Python
	Build you own version of Python

	1.3.14. Printing support with libhpdf
	1.3.15. Image processing with FreeImage
	1.3.16. zlib and libpng
	1.3.17. Support for ICU
	Use prebuild version of ICU
	Build you own version of ICU

	1.3.18. Testing Wolframe
	1.3.19. Testing with Expect
	1.3.20. Building the documentation
	1.3.21. Building the wolfclient
	1.3.21.1. Secure Socket Layer (SSL)
	Use prebuild version of OpenSSL
	Build your own version of OpenSSL

	1.3.21.2. Qt libraries
	Use prebuild version of Qt
	Build your own version of Qt

	Wolframe Server Extension Modules
	Foreword
	Chapter 1. Introduction
	Chapter 2. Basic Data Types
	2.1. Variant Type

	Chapter 3. Module Declaration
	3.1. Module Declaration Frame
	3.1.1. Empty Module Declaration Example
	3.1.2. Module Declaration Macros

	3.2. Building a Module
	3.3. Exported Objects of a Module
	3.3.1. Define Normalization Functions (Normalizers)
	Normalizer Interface
	Building Blocks
	Declaring a resource singleton object
	Declaring a normalizer not using any resource
	Declaring a normalizer using a resource

	Examples
	Example without resources
	Example with resources

	3.3.2. Define Custom Data Types
	Custom Data Type Interface
	CustomDataType Structure
	CustomDataInitializer Interface
	Class CustomDataValue

	Building Blocks
	Declaring a custom data type

	3.3.3. Define Filters
	Filter element types
	Filter element values
	Filter Interface
	Input Filter Structure
	Output Filter Structure
	Filter Structure

	Building Blocks
	Declaring a filter

	Glossary
	Index

