The Wolframe Application
Server Tutorial

Build your first Wolframe application



Draft Draft

The Wolframe Application Server Tutorial: Build your first
Wolframe application

Publication date Aug 29, 2014 version 0.0.2

Copyright © 2010 - 2014 Project Wolframe

Commercial Usage.  Licensees holding valid Project Wolframe Commercial licenses may use this file in accordance with the Project
Wolframe Commercial License Agreement provided with the Software or, alternatively, in accordance with the terms contained in a written
agreement between the licensee and Project Wolframe.

GNU General Public License Usage.  Alternatively, you can redistribute this file and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

Wolframe is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

Y ou should have received a copy of the GNU General Public License along with Wolframe. If not, see http://www.gnu.org/licenses/

If you have questions regarding the use of thisfile, please contact Project Wolframe.



http://www.gnu.org/licenses/

Draft

Draft

Table of Contents

0= 1o (o TSP POPPPTPU PPN iv
O | oo (0ot o o H TSSO RPPPTT 1
1.1. Introduction to the Wolframe tutorial .............coooieriiiiiiiiii e 1
1.0 REQUITEIMENES ...eeeiiteeeiti ettt ettt ettt e et e et e e e ebe e e e eba s 1

1.1.2. SAMPIE @PPLICALION ... 1

1.1.3. BaSIC dir€Ctory 1aYOUL ........ccovuuiieiiiii et 1

S (= oSO PTPN 2
2.1 Step 1 - BaASIC CONNECHIVITY ....eiieeiieieiii ettt e 2

2.2. Step 2 - BasiC AULNOTIZALION .........uniiiiiiie e 3

2.3. Step 3 - Get the whole chain WOIKING .......coovveiiiiiiieii e 4

2.4. Step 4 - Implement server side CUSIOMEr TiSt .......iviieiiiiii e 4

2.5. Step 5 - Implement client side cuStomMer Tist .....oo.vuiiiiiiiiieii e 10

2.6. SLEP 6 - SNOW CUSLOIMEY ....eeuiieiiiiie ettt ettt e et e e ene e e eeeans 15

2.7. Step 7 - Editing CUSIOMEY ..ottt 20

2.8. StEP 8 - Add @ NEW CUSIOMEN ...ttt e et e e e e e een e eees 22

2.9. StEP 9 - DElEE 8 CUSIOMES ...ttt e et e e e e e e 24




Draft Draft

Foreword

Thisisthe Wolframe Tutorial.

It describes step by step how to use Wolframe to build a small demo application.




Draft Draft

Chapter 1. Introduction

1.1. Introduction to the Wolframe tutorial

1.1.1. Requirements

Y ou need the following packages (We assume you are on an Ubuntu Linux, for other platforms there
are similar packages available. Some platforms may have only two monolithic packages to download,
a'wolframe' and a‘wolfclient' package):

» wolframe_0.0.3 -1_amd64.deb: the Wolframe core server

wolframe-sglite3_0.0.3 -1 _amd64.deb: the Sglite3 database driver module

wolframe-libxml2_0.0.3 -1 _amd64.deb: the XML filter based on libxml2

wolfclient_0.0.4 -1_amd64.deb: the Wolframe graphical user interface client

1.1.2. Sample application

We want to manage alist of customers with name and address and provide the usual operations:
* list al customers

e Create new customers

* edit existing customers

* view customer entries

» delete customers

1.1.3. Basic directory layout

We don't use the normal directory layout asit requires root rightsto install.
Instead we create two directories, one for server data and one for client data:
nkdir ~/tutori al

nkdir ~/tutorial/server
nkdir ~/tutorial/client




Draft Draft

Chapter 2. Steps

2.1. Step 1 - Basic connectivity

We have to set up the wolframed daemon with a running configuration file:
cd ~/tutorial/server
We create the central configuration file of the servert ut ori al . conf:

; we have to |oad the wolframe protocol to be able to talk to the server
LoadModul es {
Modul e nod_pr ot ocol _wol frane

}
; we install a verbose default | ogger to the shel
Loggi ng {
Stderr {
Level DEBUG
}
}
; one connection, one thread is enough
Server {
MaxConnections 1
Threads 1
Listen {
Address *
Port 7661
MaxConnections 1
}
}

We can start the server now in the shell foreground with:

/fusr/sbin/wol framed -f -c tutorial.conf

We see the following output of the server in the shell:

NOTI CE: Starting server

I NFO Undefined ServerTokens, using ProductOnly

I NFO Enpty random generator device. Using default device.
DEBUG Random generator initialized. Using device '/dev/urandoni
DEBUG Loadi ng prograns

I NFO Accepting connections on 0.0.0.0:7661

DEBUG 1 network acceptor(s) created.

DEBUG 0 network SSL acceptor(s) created.

The server isup and listening to port 7661. The server can be stopped anytime by pressing Ctrl+C.




Draft Steps Draft

If we use atelnet to connect to the server with:
tel net | ocal host 7661
we get:

Connected to | ocal host.

Escape character is '~]'.

BYE Access deni ed.

Connection closed by foreign host.

The server tells us:

DEBUG Connection from 127.0.0.1:39110 to 0.0.0.0: 7661 not authorized
DEBUG Connection to 127.0.0.1:39110 cl osed

So we have to configure some basic authorization first.

2.2. Step 2 - Basic Authorization

For the time being we add a dummy authorization to the server configuration which accepts all
connections (not very secure, but for now good enough):

; dummy aut hori zation
AAAA {
Aut hori zati on {
Defaul t al |l ow

}

If we start the server now, the telnet shows us:

Connected to | ocal host.
Escape character is '~]'.
VWl frane

(04

Typequi t, then Enter now and get back to the shell:

BYE
Connection cl osed by foreign host.

The server in the shell shows the following output indicating that authorization was successful:

DEBUG. Connection from 127.0.0.1:47064 to 0.0.0.0: 7661 aut hori zed
DEBUG. Connection to 127.0.0.1:47064 cl osed




Draft

Steps Draft

2.3. Step 3 - Get the whole chain working

Now that we have ensured that basic connectivity to the Wolframe server isavail able, we can configure
the basics for the Qt client, called wolfclient.

We start wolfclient with:

cd ~/tutorial/client
wol fclient tutorial.conf

First define your connection by selecting "Manage servers' in the "File" menu. Define a new
connection called "tutorial" which connects to server "localhost" on port 7661. Leave the SSL
connection unchecked.

Y ou can test the connection now by pressing the "Test Connection™ button.

Y ou should get a message like

Connecti on successf ul

in adialog box.

Safe the connection parameters by pressing the "Ok" button. You see a list of all your configured
servers, the only one we defined is "tutorial”. Press"Ok" again.

Now you can try to login to your server by selecting "Login" inthe"File" menu. Leavethe"Username"
and the "Password" fields empty as we did not configure any authentification method. Just pick the
server called "tutorial" in the " Server" field.

Because we didn't write any user interfaces yet, we get an error message:

Unable to load formor plugin "init', does the it exist?

To get rid of that error message we will have to create our start form in the Qt designer first. For now
we just click away the error message.

We start now the Qt designer and create an empty form of type QWidget named ~/ t ut ori al /
client/init.ui andsaveit.

If we restart the client and login in we see the same empty window again, but this time it's the
dynamically loaded initial form (which is again empty). The previous error message disappeared.

2.4. Step 4 - Implement server side customer

list

Wewant to store the customer datain a database. Aslanguage to describe thistransaction we use TDL
(Transaction Definition Language) and as database we use Sglite. So we haveto tell the server to load
the TDL module and the database module for Sqlite:

LoadMbdul es {
Modul e nod_protocol _wol frane




Draft Steps Draft

Modul e nod_conmand_t dli
Modul e nod_db_sqlite3

Now we also have to create a database and populate it with the following schema:

CREATE TABLE Customer (

id | NTEGER PRI MARY KEY AUTO NCREMENT,
name TEXT NOT NULL,
addr ess TEXT

)

Store thisinto schema. sql . Then execute:

sqlite3 tutorial.db < schema. sql

Now we have to tell server to use this sglite database file:

Dat abase {
SQite {
Identifier db

File tutorial.db
For ei gnKeys yes

When we restart the server we see:

DEBUG SQLite database unit 'db' created with 4 connections to file "tutorial.d

Now we want to use some XML filtersto send/receive XML over the protocol, so we have to add the
following modulestot ut ori al . conf:

LoadModul es {
Modul e nod_protocol _wol frane
Modul e nod_conmand_t dli
Modul e nod_db_sqlite3
Modul e nod_doct ype_xm
Modul e nod_filter |ibxm2

The module mod_doctype xml is there to detect documents of type XML. The module
mod_filter_libxml2 is there to process XML documents. In order to see which modules are currently
loaded in the wolframed we can use:

/usr/sbin/wolfraned -p -c tutorial.conf

We see:




Draft

Steps Draft

Modul e files to | oad:
fusr/1ib/wolframe/ nodul es/ nod_prot ocol _wol frame. so
/fusr/1ib/wol frame/ nmodul es/ mod_comrand_tdl . so
fusr/1ib/wolframe/ modul es/ mod_db_sqlite3. so
fusr/1ib/wolframe/ nodul es/ nod_doctype_xm . so
fusr/1lib/wolfranme/ modul es/mod _filter _|ibxm 2. so

which looks ok.

For mapping the requests to programs in the business layer we need the directmap module. First add
totutorial.conf:

LoadModul es {
Modul e nod_protocol _wol frane
Modul e nod_conmand_t di
Modul e nod_db_sqlite3
Modul e nod_doct ype_xm
Modul e nod_filter _|ibxm 2
Modul e nod_conmand_di r ect map

and anew section 'Processor' on the same level as 'L oadModules

Processor {
Dat abase db
CrdHandl er {
Directmap {
Program tutorial . dmap
Filter XM.=libxm 2

The "filter" directive denotes that the command handler should use the "libxml2" module for parsing
XML requests.

Now we have to create afilet ut ori al . dmap. This file maps the requests to the corresponding
transaction definitions:

COMVAND Cust omrer Li st Request
CALL Sel ect Cust omer Li st
RETURN SKI P {standal one="yes", root="list"};

We map the 'CustomerListRequest' request to a function 'SelectCustomerList' that is executed to
perform the request. It will return the document without validation (SKIP). The attributes in curly
bracketsafter the RETURN SK I P define the metadata of the document. Depending of the output filters
used we haveto define a set of document meta data. Because we do not declare the meta data as part of
the document type description as we will do later, we have to declare them here in the command. The
meta data attribute standalone="yes' tellsthe XML filter not to include any document type declaration.




Draft

Steps Draft

The declaration root="list' declares the root element for the XML output. In our example we need to
define the root element because we use XML for output and XML needs aroot element to be defined.
The returned content will be alist of customers. The function will be implemented inaTDL program
in the server. Wefirst add the TDL program declaration to the 'Processor' configuration section:

Processor {
Dat abase db
CndHandl er {
Directmap {
Program tutorial . dmap
Filter XM.=libxm 2

}

Pr ogr am Cust oner . t dl

TheCust oner . t dl file containsthe database transaction 'Sel ectCustomerList' we want to execute.
We only have to specify the enclosing tag 'customer’ for each customer record we are going to retrieve
with 'INTO customer'.

TRANSACTI ON Sel ect Cust oner Li st
BEGA N

| NTO custoner DO SELECT * from Custoner;
END

We aso need a validator for the input when the client sends a 'CustomerListRequest’. We load the
simple form DDL compiler in the 'LoadModules' section of thet ut ori al . conf and register the
simpleform program Cust oner . sf r mto thelist of programs in the samefile:

LoadMbdul es {
Modul e nod_protocol wol frane
Modul e nod_conmand_t dli
Modul e nod_db_sqlite3
Modul e nod_doct ype_xm
Modul e nod_filter |ibxm 2
Modul e nod_conmand_di r ect map
Modul e nod_ddl conpi | er _si npl eform

}
Processor {
Dat abase db
CndHandl er {
Directmap {

Program tutorial . dnap
Filter XM.=libxm 2

}

Pr ogr am Cust oner. tdl
Program Custoner. sfrm

andweadd asimpleformfileCust oner . sf r m Weadd aform called '‘CustomerListRequest' which
is empty for now but for the root element 'customer:




Draft

Steps Draft

FORM Cust oner Li st Request
-root customer

{
}

We have to restart the Wolframe daemon now and restart it with:

pkill wol franed
/fusr/sbin/wol framed -f -c tutorial.conf

Thiswe haveto do every time we change the configuration filet ut or i al . conf or one of thefiles
referenced thereast ut ori al . dnap, Cust onmer . t dl or Cust oner. sfrm

The server shows now a message about the transaction function it loaded:
DEBUG Loaded transaction function 'Sel ect CustonerlList'’

Now we create atelnet request which contains pseudo authentication credentials and arequest for the
list of customers, called~/ tut ori al / cl i ent/ Cust oner Li st Request . net cat :

AUTH

VECH NONE

REQUEST

<?xm version="1.0" encodi ng="UTF-8"?>

<I DOCTYPE cust oner SYSTEM ' Cust omer Li st Request' >
<cust oner/>

QT
This we can execute with:
netcat -v |ocal host 7661 < CustonerLi st Request. netcat

and we get:

Wl frame

(014

MECHS NONE

OK aut hori zation

ANSVER

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<list/>

OK REQUEST Cust oner Li st Request
BYE




Draft

Steps Draft

We got an empty list of customers. So we have successfully configured the server for our first
command.

Let's add some customer data now:

cat > data. sql

| NSERT | NTO Cust oner (nane, addr ess) val ues(' Dr Who',' Bl ue Police Box');

| NSERT | NTO Cust oner (nane, addr ess) val ues('John Snith',' The Weel in Space');
Grl-D

sqlite3 tutorial.db < data. sql

When we reexecute the netcat command we see that the answer contains now the list of customers:

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<list>
<cust omer >
<id>1</id>
<name>Dr Who</ nane>
<addr ess>Bl ue Pol i ce Box</ address>
</ cust oner >
<cust omer >
<i d>2</id>
<nane>John Sm t h</ nane>
<addr ess>The Weel in Space</address>
</ cust oner >
</list>

So, the datais now correctly retrieved from the database.
Instead of using netcat you can also use the wolframec for testing the requests.

First create an XML file containing just the request and name it Cust oner Li st Request . xni :

<?xm version="1.0" encodi ng="UTF-8""?>
<! DOCTYPE cust oner SYSTEM ' Cust omer Li st Request' >
<cust oner/ >

The request can be executed by calling:

wol framec -d CustonerlLi st Request. xni

We can also test the command without even starting the wolframed daemon process. We use the
wolfilter program for that in the following way:

cat ~/tutorial/client/CustonerListRequest.xm | \
wol filter -c ~/tutorial/server/tutorial.conf CustonerlListRequest




Draft Steps Draft

We can move now to the wolfclient to make our first request visible.

2.5. Step 5 - Implement client side customer
list

It's time now to get something working visually, so we start to add a first simple interface to our
wolfclient.

For this we need the 'Qt designer'. We openthefile~/tutorial /client/init. ui againdraw
asingle button with the text "Customer List":

W Form - init. ui M ES

Customer LiEt‘ o

We add a dynamic property ‘form' of type String to this button, which has the value 'customers:

W Form - init. ui ax]|| - autoDefault r

....................... - default r
| [——1]5 & o ¢ o o o o o g
- m Customer List E ---------- - -
' —a Dynamic Properties

=8 form customers

When we save the form and start the wolfclient, we get (after logging in) the first page with the
"Customer List" button. Pressing it gives the error message:

0 Unable to load form or plugin ‘customers’, does it exist?

This means we have to define anew form ~/tut ori al / cl i ent/ cust onmer s. ui , which will
show the list of customers, for now we leave it empty. When we start the wolfclient and press the
"Customer List" button again, we see that the form gets changed to the "customer” form (empty).

We add now a QTr eeW dget item to the cust oner . ui form and choose a grid layout for the
whole form. We change the name of the widget to ‘customer:

10



Draft Steps Draft

W Form - customers. ui

1 r Property Editor g

| Filter l:llh_ = 4

customer: QTreeWidget

° Property Value

: QODbje

: ® objectName customer

o |

. 0 dge

. enabled v

E- geometry (9, 9), 382 x ...
- sizePolicy [Expanding. ...

Signal/Slot Editor g

i

U L L Sender i | Signal |Receivu

We aso disable the 'rootlsDecorated' tick (we have a list, not a tree of customers). We also set
'selectionM ode' to 'SingleSel ection' and 'sel ectionBehaviour' to 'selectRows to get the default expected
behaviour of alist.

Now we change the columns of the list (context menu "Edit items" in the widget data area):
Columns | ttems |

| namea

il jl 1' il Properties ==

We can now open the wolfclient and press the button and the customer list is loaded. But it's empty,
we havefirst to fill it with data of our customers.

So we add a string property ‘action’ to the widget ‘customer' containing the following value:

Cust omrer Li st Request custoner { }

We define the "action’ to be executed, when the form is loaded. In our case we want to execute a
'‘CustomerListRequest'. The root el ement of the request should be ‘customer’. We currently don't want
to pass any additional elements, so we specify '{ }' for the empty content:

11



Draft Steps Draft

W Form - customers. ui

name address |—

[ Dynamic Properties
- u m || = action CustomerListRequest customer { }

When we reexecute the wolfclient still nothing happens. So we enable the 'Developer Mode' in the
settings in the tab 'Developer'. Then we see that the XML request has been constructed:

P ) Debug Window &) g

Ctrl-Alt-D enables/disables the debug window

Mavigation
@ Al
>—« Form init
>-« Form customers
v- @ dataload(customer)
" request
answer

]>

Type Message
1 Debug Parse DataStructDescription ["{}"]
2 Debug readdatastruct™

get data load request "t=L:c=w=customer:4" [ <?xmlversion="1.0" encoding="UTF-8" stai
<IDOCTYPE customer SYSTEM 'CustomerListRequest's>
<customer/>

]

4 Debug pushrequesttag="t=L:ic=tw=customer:4"

5 Debug sendline: "REQUEST"

<[ | 1< >

|Debug v || Refresh || Clear |

3 Debug

~
W

We see that the request was ok but that the answer has errors:

12



Draft Steps Draft
£ Debug Window ESNED
Ctrl-Al-D enables/disables the debug window
Mavigation
« @ All
>—+# Form init

>« Form customers

v- @ dataload(customer)
" request
@ answer

Type
deliver widget answer (implicit) For "customer:4" [ <?xmlversion="1.0" encoding="UT
1 Debug <IDOCTYPE list SYSTEM "CustomerList"»><list><customerid="1"><name=>Dr Who</na

_ £\ Warning Using deprecated implicit mapping of request answer to widget, We recommend to
| Debug Feedingwidget "customer" with implicicely mapped answer

| @ Critical "element not defined: 'customer/name’ in XML tag "/customer”

Failed to assign request answer to widget: "Form.customer” message tag: "t=L:c=iw+ .
@ Critical <IDOCTYPE list SYSTEM "CustomerList"><list><customer id="1"><name>Dr Who</na| v
< ] 1< >

F S I N

(¥

Debug ~ | Refresh Clear

Thereason for thisis, we have to tell the client how to map the elements of the result structure in the
XML back to widgets and properties of the widgets.

We want to map the following XML:

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<list>
<cust oner >
<id>1</id>
<nane>Dr Who</ nanme>
<addr ess>Bl ue Pol i ce Box</ address>
</ cust oner >
<cust oner >
<id>2</id>
<nane>John Sm t h</ name>
<addr ess>The Weel in Space</address>
</ cust oner >
</list>

We reference the root element and the tag and attribute values into the properties of the list widget
‘customer’ (in our case the rows called 'name’ and 'address)). This addressing schema belongsinto the
dynamic property 'answer' similar to the 'action’ property:

CustonmerList list {
customer[] {
i d={?};
nanme{{row. nane}};
addr ess{{row. address}}

13



Draft Steps Draft

The line breaks and indentation are optional and you can write the mapping inasingleline. The'? is
used for elementsin the XML we don't need at the moment. 'row' isa property of the QTr eeW dget
widget named 'customer' and iterates through all rows in the list. Each row has sub-properties 'name
and 'address’ which represent the corresponding column:

W Form - customers. ui T

. = 3 —

- |name |address r —
— ———
—

Dynamic Properties
-- action CustomerListRequest customer { }
L] R answer CustomerList list {customer[] {id={?}; name{{r...

When we reexecute the wolfclient and click on the customer list we see that the customer list is shown

as expected:
name address
'Or Who Blue Police Box

John Smith The Wheel in Space

But when we look at the contents of the debug window we still see an error reported:

14



Draft Steps Draft

F.A® Debug Window &) &
CErl-Alt-D enables/disables the debug window
Mavigation
«-@ All
>—«" Forminit

>« Form customers
>~ i@ dataload(customer)

)>

Type Message
Space</address></customer=</list>

8 Debug Feedingwidget "customer” with rule based validated serialization of answer
9 |Debug Parse DataStructDescription ["{ customer[]{id={?}; name{{row.name}}; address{{rc

10 @ C... Document type is not defined but expected to be equal to "CustomerList”

11 | Debu [Fill darastruct] complete content "customer[{id="; name{'Dr Who'}; address{'Blue
g name{John Smith'}; address{ The Wheelin Space'}}"

write data struct "customer[{id="; name{'Dr Who'}; address{'Blue Police Box'}, id='
address{ The Wheelin Space'}}"

13 Debug set state For tree widget "customer”

<[ ] < >

12 |Debug

»

£

Debug ~ | Refresh Clear

For ssimplicity we defined the output with the document meta data attribute '{ standalone = "yes" }'
that the returned document should not be built with an explicit document type definition. But the client
expects a document type declaration. For this we change the definitioninthefilet ut ori al . dmap
we created in step 4 in the following way:

COMVAND Cust oner Li st Request
CALL Sel ect Cust omer Li st
RETURN SKI P CustomerList {root="list"};

The directive 'RETURN SKIP CustomerList {root="list"}' states that a document of type
'‘CustomerList’ with the root element 'list' is returned without validation of the output. We omit a
validation on purpose for now to get to the next step.

2.6. Step 6 - Show customer

In the next step we want to show how data is communicated between the forms by implementing a
simple "show me customer data" use case.

Let's start by adding abuttonincust oner s. ui caled 'Show'":

15



Draft

Steps Draft

W Form - customers.ui

- | name address | =

== o

QPushButton

We add a dynamic property ‘form'’ to the button which we set to:

cust omer _show?i d={ cust oner. sel ect ed}

As before 'customer_show' is the name of the form to be loaded when we press the button.

We want the currently selected customer to be accessible in the cust omer _show. ui form, so we
have to pass the parameter 'id' as the value of the currenctly selected row in the ‘customer’ list widget.
Thisis denoted by '{ customer.selected} .

We also add some signals for the double click on the customer list to click the " Show" button:

& Form - customers.ui FTREET) = |Value I-
name | address I -
= = —
[ —
il
£ - i
= =
o . -
g Signal/Slot Editor )
=4
3 i
o Sender " | Signal Receiver Slot
E customer double...Index) pushButton click()
E
(=]
=
wclick()

Now of course we haveto create anew form called cust oner _show. ui . We choose aform layout
and add two fields with labels 'Name:' and 'Address:" and each of them having aQLi neEdi t widget.
The names of the widgets should be 'name' and 'address in order to match the future read request
from the server. Temporarily we also add an 'id' field which shows us the current value of the form
parameter 'id' passed by the 'customers’:

W Form - customer_show.ui N E3

=3
B-p
B
Emd

16



Draft Steps Draft

Finally we also need a button which brings us back to the customer list by simply adding a ‘form'’
action with the value 'customers”:

- Form - customer_show. ui A ES

'- form customers

If we start the wolfclient and select a customer and try to press 'Show' we will notice that the button
is disabled. This is because the form parameter 'id' cannot be set to the id of the currently selected
customer. Widgets in wolfclient have the default behaviour of using the 'id' attribute as an identifier
for the whole row. In the previous step we didn't map the 'id' from the XML to the 'id' property of the
row. So we change the 'answer' property of the ‘customer' widget in the ‘customers.ui' form:

CustomerList list {
customer[] {
i d={row.id};
nanme{ {r ow. nane}};
addr ess{{row. address}}

H

'id={row.id}"' mapsthe 'id" attribute to the 'id' property of each row.

The'id'isnow an XML attribute and not an element anymore. Wea sowould liketo do somevalidation
on the output, so we can rely on each customers to actually have an 'id" attribute.

This is the moment we go back to the server and start with output form validation. We add a
form called 'CustomerList' to the file Cust omer . sf r mform which describes the result of the
'‘CustomerListRequest’ more precisely and especially declares the 'id' as mandatory attribute of the
customer. The form 'CustomerList' contains now the meta data element definition for ‘root' ("-root
list"). Wewill not have to define it anymore in any directmap RESULT directive for '‘CustomerList":

FORM Cust oner Li st

-root |ist
{
custoner []
{
id!@tring
nanme string
address string
}
}

We change now thecommandint ut or i al . dmap again to switch on validation. The SKIP attribute
is removed and the root element does not have to be specified because it is defined now in the form
declaration:

COMVAND Cust omrer Li st Request CALL Sel ect Cust oner Li st RETURN Cust oner Li st ;

17



Draft

Steps Draft

Checking with:;

netcat -v |ocal host 7661 < CustonerLi st Request. netcat
or:

wol f ramec -d CustonerlLi st Request. xni

we get now:

<?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
<! DOCTYPE | i st SYSTEM " CustonerList">
<list>
<customer id="1">
<nane>Dr Who</ nane>
<addr ess>Bl ue Pol i ce Box</ address>
</ cust oner >
<customer id="2">
<nane>John Sm t h</ nane>
<addr ess>The Weel in Space</address>
</ cust oner >
</list>

Now the 'Show" button isno longer disabled and when double-clicking an entry in thelist of customers
the wolfclient shows theid of the customer.

The'name’ and the 'address fields are still empty though. We could of course use two form parameters
‘'name’ and ‘address' to propagate the val ues between the two forms, but if the form gets more complex,
thisisnot agood idea. It's better to |oad the data for one customer, selecting the data by the current 'id'.

We start by setting the 'action’ property on the cust onmer _show. ui form as follows: we want it
to execute a request with document type ‘CustomerRequest’ which searches for a single customer by
customer id:

W Form - customer_show.ui [ E3 =

B —— e
Dynamic Properties
------------ #- action CustomerRequest customer {id={id}}

The XML sent to the server will look as follows:

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE cust omer SYSTEM ' Cust onmer Request' >
<customer id="2"/>

We also get in the client:

18



Draft Steps Draft

no conmand handl er for ' Custoner Request'’

and in the server:

ERROR: Error calling procedure: no conmand handl er for ' CustonerRequest'

We see, that the request is sent to the server, but we didn't define the necessary things in the server
yet. So we add another simple mapping:

COMVAND Cust oner Request CALL Sel ect Cust oner RETURN Cust oner;

totutorial . dmap.

We define a new form 'CustomerRequest' in Cust oner . sf r mwhich contains the validation of
the customer request. The customer request should have except the root element ‘customer' and a
mandatory attribute 'id' to search for:

FORM Cust orer Request
-root custoner

{
}

id!@tring

Of course we have to define a transaction function 'SelectCustomer' in Cust oner . t dl :

TRANSACT!I ON Sel ect Cust oner
BEG N

I NTO . DO SELECT * from Customer WHERE i d=$(id);
END

The'$(id)' refersto the 'id' we pass down for the customer record to retrieve. We don't have to specify
‘$(customer/id)' here as the root element is always removed before.

We also have to define how the result should be mapped, so we add a 'Customer' form to

Custoner.sfrm

FORM Cust oner
-root customer

{
id!@tring
name string
address string
}

We can see in the shell if this new request is working. We define create a file called
Cust onmer Request . xm with the following content:

19



Draft Steps Draft

<?xm version="1.0" encodi ng="UTF-8"?>
<I DOCTYPE cust omer SYSTEM ' Cust onmer Request' >
<custoner id="2"/>

We can then see that our request is working by executing:
wol f ramec -d Custoner Request. xm
which returns us:

<?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
<I DOCTYPE cust omer SYSTEM " Cust oner ">
<custoner id="2">
<name>John Snit h</ nane>
<addr ess>The Weel in Space</address>
</ cust oner >

Now if we restart client and server and we click on the second customer in the list we get:

Name: [John Smith

Address: | The Wheel in Space

ID: |2

Back |

So we successfully read the data of a customer into aform.
Thistimewedidn't specify an'answer' attribute in the ‘customer_show.ui' form. So how could the data
be mapped back into the widget? There is an implicit mapping of elements by name, so the contents

of the 'name’ XML element are mapped into the widget with name 'name’. This should only be used
if the forms are simple, it's better to specify an explicit answer as follows:

Customer customer { id={?}; nane{{nanme}}; address{{address}} }

2.7. Step 7 - Editing customer

We change the show customer use case dightly, so that we can also edit the customer in the
cust oner _show. ui form.

Let'sfirst make acopy of cust omer _show. ui and nameit cust oner _edit. ui .

As before we add first a"Edit" button to the cust oner s. ui with ‘forms' set to:

custoner _edi t ?i d={ cust oner. sel ect ed}

20



Draft

Steps Draft

W Form - customers.ui

- | name address |

f

QPushButton

R —— —

Wechangetheformcust oner _edi t . ui andremovethelinewith'ID' aswedon't need it anymore
and because nobody should be able to edit the id of a customer and change it! We also add another
button and label it 'Save, for this button we set ‘action’ to generate a'CustomerUpdate’ request:

Cust oner Updat e custoner {
i d={rmain.id};
nane {{nmain. nane}};
address {{main. addr ess}}

We also set 'form' to 'customers, so the user gets taken back to the changed list of customers when
saving the current record:

B Form - customer_edit. ui

-- action CustomerUpdate customer {id={main.id}; name...
- form customers

The resulting 'CustomerUpdate' XML request |ooks as follows:

<?xm version="1.0" encodi ng="UTF-8""?>
<! DOCTYPE cust oner SYSTEM ' Cust oner Updat e' >
<custoner id="2">

<nanme>John Snit h</ nane>

<addr ess>The Weel in Space</address>
</ cust oner >

Similar to to the "show customer” case we add now anew command mappingint ut ori al . dmap:

COMVAND Cust oner Updat e CALL Updat eCust oner ;

We also add a simple form 'CustomerUpdate’ to Cust oner . sf r mwhich looks very similar to the
'‘Customer' form:

FORM Cust oner Updat e

21



Draft Steps Draft

-root customer

{
id!@tring
nane string
address string
}

Finally we write the transaction function 'CustomerUpdate’ in Cust orrer . t dl :

TRANSACTI ON Updat eCust ormrer
BEG N
DO UPDATE Custoner SET nane=$(nane), address=$(address)
WHERE i d=$(i d);
END

Note, that this time the database transaction doesn't return aresult.

Restart server and client and start to edit the customers.

In debug mode in wolfclient we can right-click on the "Save" button and we pick the menu item
"Debug: Inspect commands'. Then we get a dialog box which shows us the status of the widget
elements and how the XML request looks like which would be sent down to the server:

Name: |John Smith

Address: | The Wheel in Space

Save Back

Condition variables on click:

main.id [yes], main.name [yes], main.address [yes]
Request on click:
<7?wml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE customer SYSTEM 'CustomerUpdate'>
<customer id="2">

=name=John Smith</name=>

<address=The Wheel in Space</address=>
=/customer=
Form on click is ‘customers' without parameters

2.8. Step 8 - Add a new customer

We also want to add new customers to the list. The "add customer" case is very similar to the "edit
customer" case.

Let'scopy thecust oner _edi t. ui tocust oner _add. ui . Weremove the 'action' and 'answer'
on from the form itself as we don't want to read anything when we create a new customer. But of
course we could execute here a" Get new customer initial data' request which initializes certain values
in the form.

22



Draft

Steps Draft

We change the "Save' hutton and rename it to "Add". We also change 'CustomerUpdate’ to
'‘CustomerCreate' in the ‘action’ attribute and we remove the id property as this one is automatically
choosen by the sequence in the database:

Cust oner Creat e custoner {
nane {{main. nane}};
address {{main. addr ess}}

- Name:. . |

....................... ¥ o ction

We aso introduce a new element here, the 'initalFocus property. We set it on the 'name
QLi neW dget , so that it getstheinitial keyboard focus when the form is loaded:

© Address: |

Inthecust omer s. ui formwe haveto add a'Add' button which has one property ‘form' with value
‘customer_add'":

Now for the server side. We add a new mapping for customer creationint ut ori al . dmap:

COVMAND Cust oner Creat e CALL Creat eCust oner;

We also have to add the form 'CustomerCreate' to Cust orrer . sfrm

FORM Cust omrer Cr eat e
-root custoner

{

name string
address string

Thisisthe same as the 'CustomerUpdate' form with the exception that we don't accept an 'id" attribute
to be passed to the server.

Last we add a'CreateCustomer' transaction function:

TRANSACTI ON Cr eat eCust omrer
BEG N

23



Draft

Steps Draft

DO | NSERT | NTO Cust oner ( name, address )
VALUES( $(name), $(address) );
END

When werestart the server and client we see thefollowing request being passed to thewolframe server:

<?xm version="1.0" encodi ng="UTF-8""?>
<! DOCTYPE cust omer SYSTEM ' Cust oner Create' >
<cust omer >
<nane>New Cust oner </ nane>
<addr ess>New Locati on</ addr ess>
</ cust oner >

2.9. Step 9 - Delete a customer

We want to get rid of customers. For this we have to change little in the cust or ns. ui form: a
button "Delete" with the following ‘action’ property:

Cust omer Del et e custoner {id={custoner.sel ected}}

We aso want to reload the customer list after deletion. For now we just set add a 'form' property with
the value of 'customer’, thisis the simplest way to reload the list of customers after the deletion:

...... N B (= = B . N
|,Ummwfmf:1. Add | Edit | Show |.- DeleteE H- action CustomerDelete customer {id={customer.selected}}

Elform  [customers

We add another map for the ‘CustomerDelete' request int ut ori al . dmap:

COVMAND Cust oner Del et e CALL Del et eCust oner ;

We aso add anew form 'CustomerDelete' to the simpleform file Cust oner . sf r mwhich alows us
only the specify an 'id' attribute of the customer to delete:

FORM Cust oner Del et e
-root custoner

{
}

id!@tring

Finally we add the implementation of the delete transaction in Cust omrer . t dl :

TRANSACTI ON Del et eCust oner
BEG N

DO DELETE FROM Cust oner WHERE i d=$(i d);
END

24



Draft Steps Draft

Executing the request we see in the wolfclient debug output:

<?xm version="1.0" encodi ng="UTF-8""?>
<! DOCTYPE cust omer SYSTEM ' Cust oner Del ete' >
<customer id="3"/>

Seems ok, customer gone. :-)

25



	The Wolframe Application Server Tutorial
	Table of Contents
	Foreword
	Chapter 1. Introduction
	1.1. Introduction to the Wolframe tutorial
	1.1.1. Requirements
	1.1.2. Sample application
	1.1.3. Basic directory layout


	Chapter 2. Steps
	2.1. Step 1 - Basic connectivity
	2.2. Step 2 - Basic Authorization
	2.3. Step 3 - Get the whole chain working
	2.4. Step 4 - Implement server side customer list
	2.5. Step 5 - Implement client side customer list
	2.6. Step 6 - Show customer
	2.7. Step 7 - Editing customer
	2.8. Step 8 - Add a new customer
	2.9. Step 9 - Delete a customer


